摘要:
A micro-lens array and manufacturing method. A hybrid micro-lens in which a refractive lens and a diffraction lens are formed includes: a refractive lens; a first ultraviolet hardening material which is bonded on a curved surface of the refractive lens to form an aspheric surface; a support substrate including a concave portion into which the refractive lens is inserted and supported; and a diffraction lens which is formed at a position corresponding to the refractive lens disposed on the support substrate.
摘要:
A micro-lens array and manufacturing method. A hybrid micro-lens in which a refractive lens and a diffraction lens are formed includes: a refractive lens; a first ultraviolet hardening material which is bonded on a curved surface of the refractive lens to form an aspheric surface; a support substrate including a concave portion into which the refractive lens is inserted and supported; and a diffraction lens which is formed at a position corresponding to the refractive lens disposed on the support substrate.
摘要:
A method of fabricating a diffractive lens array mold and an ultraviolet (UV) dispenser for use in the same. The method includes the steps of (a) fabricating a single or array diffractive lens mold using a nickel (Ni) shim; (b) fabricating a first diffractive lens array mold using an ultraviolet (UV) dispenser including the single diffractive lens mold; and (c) fabricating a second diffractive lens array mold having an inverted profile of the first diffractive lens array mold.
摘要:
An optical pickup and an optical recording and/or reproducing apparatus using the optical pickup are provided. The optical pickup includes: a light source; an optical bench on which the light source is mounted; a focusing member including an objective lens, focusing light emitted from the light source to form a light spot on an optical information storage medium; and an optical path forming member having a transparent block that includes a light entrance/exit surface on which the optical bench and the focusing member are arranged, a first reflection surface, and a second reflection surface opposing the first reflection surface, where the optical path forming member directs the light emitted from the light source toward the objective lens by reflecting the light emitted from the light source on the first and second reflection surfaces. The optical pickup satisfies the requirement for smaller, slimmer design and can be integrated using semiconductor manufacturing processes.
摘要:
Provided is a method of exposing using an electron beam. The provided method of exposing using the electron beam includes defining main fields on an exposure area of an electron beam exposure target and defining a plurality of sub-fields on the main fields, selecting a main field to be exposed, selecting at least one sub-field of the selected main field, exposing the selected sub-field by using the electron beam, and selecting at least one of the other sub-field, which is not adjacent to the previously selected sub-field and not exposed yet, and exposing the sub-field by using the electron beam.
摘要:
An optical pickup and an optical recording and/or reproducing apparatus using the optical pickup are provided. The optical pickup includes: a light source; an optical bench on which the light source is mounted; a focusing member including an objective lens, focusing light emitted from the light source to form a light spot on an optical information storage medium; and an optical path forming member having a transparent block that includes a light entrance/exit surface on which the optical bench and the focusing member are arranged, a first reflection surface, and a second reflection surface opposing the first reflection surface, where the optical path forming member directs the light emitted from the light source toward the objective lens by reflecting the light emitted from the light source on the first and second reflection surfaces. The optical pickup satisfies the requirement for smaller, slimmer design and can be integrated using semiconductor manufacturing processes.
摘要:
Provided is an objective optical system employing a gradient index (GRIN) lens. A refractive index of the GRIN lens is changed in an axial direction and a direction perpendicular to the axial direction. The GRIN lens has a refractive index n satisfying the following equation: n ( r , z ) = ∑ i = 0 n r2i r 2 i + ∑ j = 0 n zj z j where z is a distance from the center of the lens in the axial direction and r is a distance from the center of the lens in the direction perpendicular to the axial direction. Thus, an objective optical system with a high numerical aperture can correct aberration.
摘要:
A method of manufacturing a micro-lens in which at least one first lens is first molded using a compression technique. A lens holder is produced including a hole in which the first lens is seated. A second lens is formed on a bottom surface of the lens holder. The first and second lenses are combined by aligning the first and second lenses along an optical axis in the hole of the lens holder. Thus, a hybrid micro-lens composed of a diffractive lens and a refractive lens, along with an array of the hybrid micro-lenses are easily manufactured.
摘要:
Provided is a method of exposing using an electron beam. The provided method of exposing using the electron beam includes defining main fields on an exposure area of an electron beam exposure target and defining a plurality of sub-fields on the main fields, selecting a main field to be exposed, selecting at least one sub-field of the selected main field, exposing the selected sub-field by using the electron beam, and selecting at least one of the other sub-field, which is not adjacent to the previously selected sub-field and not exposed yet, and exposing the sub-field by using the electron beam.
摘要:
Provided are a hybrid lens and method of fabricating the same. A hybrid lens designed as a combination of a refractive lens and a diffractive lens includes a refractive lens including a first spherical surface and a second planar surface, a diffractive lens that is bonded onto the first surface of the refractive lens and includes a refractive portion for correcting spherical aberration, and a lens holder attached to an outer perimeter of the first surface of the refractive lens. The method eliminates the need for high temperature heating or cooling or a high pressure process while allowing rapid and simple processing at room temperature under low pressure and thus high volume production.