Abstract:
A method for forming a thermoelectric film having a micro groove includes the following steps: A) forming a plurality of parallel sacrificing wires by electrospinning, a diameter of each sacrificing wire being 100-500 nm; B) coating a thermoelectric film having a thickness of 80-200 nm on a part of a surface of each sacrificing wire; and C) removing the sacrificing wires from the thermoelectric films and thus obtaining the thermoelectric films each having the micro groove, a radio side of each thermoelectric film being open to the surroundings. The thermoelectric films finally prepared can have higher size uniformity without the disadvantage of catalyst residual. Further, the thermoelectric films each have a size smaller than the mean free path of phonons in one dimension, and thus the thermoelectric properties of the thermoelectric films can be improved.
Abstract:
The present invention relates to a sensing electrode of an enzyme-based sensor, and the enzyme-based sensor comprising the same can be stably stored at room temperature. The sensing electrode comprises: an electrode substrate and an enzyme sensing layer formed thereon, wherein the enzyme sensing layer comprises sequentially laminated layers of: a first carbon material-nano metal layer containing a carbon material and nano-metal particles; an ionic liquid layer comprising an ionic liquid consisting of a cation and an anion; a second carbon material-nano metal layer containing a carbon material and nano-metal particles; and an enzyme layer. The present invention also provides a method for manufacturing the sensing electrode of an enzyme-based sensor.
Abstract:
The preparation method of electrolytes provided by the present invention involves applications of a first solid oxide powder and a second solid oxide powder, both of which are prepared by using a sol-gel process and a calcination process. Each of the first and second solid oxide powders is a Perovskite-type oxide. After the first and second solid oxide powders are readily mixed, they are compressed into a pellet and then sintered to prepare the afore-mentioned electrolytes for SOFC. It is found in the present invention that by mixing and compressing different solid oxide powders, the solid oxide powder having smaller particle size can fill into the gaps of the other solid oxide powder. After the pellet is sintered, the density of the product is significantly improved.