Abstract:
A linear elastic modulus measurement method and a linear elastic modulus measurement device can reduce external disturbances such as oscillation and electrical noise, and accurately and stably measure the linear elastic modulus of a linear elastic body even in the case where damping due to viscous stress is large. The measurement device computes the oscillation velocity (dx/dt) of an oscillator from the displacement of the oscillator brought into contact with the linear elastic body, and multiplies dx/dt by a linear velocity feedback gain to generate a feedback control signal. The measurement device applies, to the oscillator, a force proportional to the oscillation velocity of the oscillator by the feedback control signal, to cause the oscillator to self-oscillate. The measurement device computes the linear elastic modulus of the linear elastic body from the frequency when the self-oscillation of the oscillator is detected and the mass of the oscillator.
Abstract:
In a case where (i) accelerations except a specific angular acceleration cause a problem of noise and (ii) low-cost production is required, the present invention provides a device for measuring an angular acceleration which device has reduced noise that is caused by accelerations except the specific angular acceleration, by having an arrangement in which an oscillator is supported by a spring structure capable of greatly restraining movement in directions except a specific rotation direction.A device for measuring an angular acceleration integrally fabricated by a semiconductor microfabrication technology, the device including: an oscillator rotating around a rotating shaft as a center; a plurality of nodes for supporting the oscillator, the plurality of nodes each being provided at a point on a circle whose radius is r and whose center is the rotating shaft; a plurality of parallelogram links each having arms whose length is r, the arms making movement of the plurality of nodes supporting the oscillator become circular movement around the rotating shaft as a center; a supporting section for supporting fixed nodes of the plurality of parallelogram links; a rotation angle detecting section for detecting a rotation angle; and a calculation section for calculating an angular acceleration from the
Abstract:
A linear elastic modulus measurement method and a linear elastic modulus measurement device can reduce external disturbances such as oscillation and electrical noise, and accurately and stably measure the linear elastic modulus of a linear elastic body even in the case where damping due to viscous stress is large. The measurement device computes the oscillation velocity (dx/dt) of an oscillator from the displacement of the oscillator brought into contact with the linear elastic body, and multiplies dx/dt by a linear velocity feedback gain to generate a feedback control signal. The measurement device applies, to the oscillator, a force proportional to the oscillation velocity of the oscillator by the feedback control signal, to cause the oscillator to self-oscillate. The measurement device computes the linear elastic modulus of the linear elastic body from the frequency when the self-oscillation of the oscillator is detected and the mass of the oscillator.
Abstract:
In a case where (i) accelerations except a specific angular acceleration cause a problem of noise and (ii) low-cost production is required, the present invention provides a device for measuring an angular acceleration which device has reduced noise that is caused by accelerations except the specific angular acceleration, by having an arrangement in which an oscillator is supported by a spring structure capable of greatly restraining movement in directions except a specific rotation direction.A device for measuring an angular acceleration integrally fabricated by a semiconductor microfabrication technology, the device including: an oscillator rotating around a rotating shaft as a center; a plurality of nodes for supporting the oscillator, the plurality of nodes each being provided at a point on a circle whose radius is r and whose center is the rotating shaft; a plurality of parallelogram links each having arms whose length is r, the arms making movement of the plurality of nodes supporting the oscillator become circular movement around the rotating shaft as a center; a supporting section for supporting fixed nodes of the plurality of parallelogram links; a rotation angle detecting section for detecting a rotation angle; and a calculation section for calculating an angular acceleration from the rotation angle.