Abstract:
A low complexity system and method for operating a receiver in order to estimate an offset between the actual sample clock rate 1/TS′ of a receiver and an intended sample clock rate 1/TS. The receiver captures samples of a received baseband signal at the rate 1/TS′, operates on the captured samples to generate an estimate for the clock rate offset, and fractionally resamples the captured samples using the clock rate offset. The resampled data represents an estimate of baseband symbols transmitted by the transmitter. The action of operating on the captured samples involves computing an error vector signal and then estimating the clock rate offset using the error vector signal. The error vector signal may be computed in different ways depending on whether or not carrier frequency offset and carrier phase offset are assumed to be present in the received baseband signal.
Abstract:
A low complexity system and method for operating a receiver in order to estimate an offset between the actual sample clock rate 1/TS′ of a receiver and an intended sample clock rate 1/TS. The receiver captures samples of a received baseband signal at the rate 1/TS′, operates on the captured samples to generate an estimate for the clock rate offset, and fractionally resamples the captured samples using the clock rate offset. The resampled data represents an estimate of baseband symbols transmitted by the transmitter. The action of operating on the captured samples involves computing an error vector signal and then estimating the clock rate offset using the error vector signal. The error vector signal may be computed in different ways depending on whether or not carrier frequency offset and carrier phase offset are assumed to be present in the received baseband signal.
Abstract:
A low complexity system and method for operating a receiver in order to estimate an offset between the actual sample clock rate 1/TS′ of a receiver and an intended sample clock rate 1/TS. The receiver captures samples of a received baseband signal at the rate 1/TS′, operates on the captured samples to generate an estimate for the clock rate offset, and fractionally resamples the captured samples using the clock rate offset. The resampled data represents an estimate of baseband symbols transmitted by the transmitter. The action of operating on the captured samples involves computing an error vector signal and then estimating the clock rate offset using the error vector signal. The error vector signal may be computed in different ways depending on whether or not carrier frequency offset and carrier phase offset are assumed to be present in the received baseband signal.
Abstract:
A low complexity system and method for operating a receiver in order to estimate an offset between the actual sample clock rate 1/TS′ of a receiver and an intended sample clock rate 1/TS. The receiver captures samples of a received baseband signal at the rate 1/TS′, operates on the captured samples to generate an estimate for the clock rate offset, and fractionally resamples the captured samples using the clock rate offset. The resampled data represents an estimate of baseband symbols transmitted by the transmitter. The action of operating on the captured samples involves computing an error vector signal and then estimating the clock rate offset using the error vector signal. The error vector signal may be computed in different ways depending on whether or not carrier frequency offset and carrier phase offset are assumed to be present in the received baseband signal.