Abstract:
There is provided a lithium-iron-manganese-based composite oxide capable of providing a lithium-ion secondary battery which has a high capacity retention rate in charge/discharge cycles and in which the generation of a gas caused by charge/discharge cycles is suppressed. A lithium-iron-manganese-based composite oxide having a layered rock-salt structure, wherein at least a part of the surface of a lithium-iron-manganese-based composite oxide represented by the following formula is coated with an oxide of at least one metal selected from the group consisting of La, Pr, Nd, Sm and Eu: LixM1(y-p)MnpM2(z-q)FeqO(2-δ) wherein 1.05≦x≦1.32, 0.33≦y≦0.63, 0.06≦z≦0.50, 0
Abstract:
There is provided a lithium-iron-manganese-based composite oxide capable of providing a lithium-ion secondary battery which has a high capacity retention rate in charge/discharge cycles and in which the generation of a gas caused by charge/discharge cycles is reduced. A lithium-iron-manganese-based composite oxide having a layered rock-salt structure, wherein at least a part of the surface of a lithium-iron-manganese-based composite oxide represented by the following formula (1) is coated with an inorganic material: LixM1(y-p)MnpM2(z-p)FeqO(2-δ) (1) (wherein 1.05≦x≦1.32, 0.33≦y≦0.63, 0.06≦z≦0.50, 0
Abstract:
A lithium-manganese composite oxide containing a lithium-iron-manganese composite oxide represented by the composition formula: Li1+x−w(FeyNizMn1−y−z)1−xO2−δ, where 0