Abstract:
There is provided a lithium-iron-manganese-based composite oxide capable of providing a lithium-ion secondary battery which has a high capacity retention rate in charge/discharge cycles and in which the generation of a gas caused by charge/discharge cycles is suppressed. A lithium-iron-manganese-based composite oxide having a layered rock-salt structure, wherein at least a part of the surface of a lithium-iron-manganese-based composite oxide represented by the following formula is coated with an oxide of at least one metal selected from the group consisting of La, Pr, Nd, Sm and Eu: LixM1(y-p)MnpM2(z-q)FeqO(2-δ) wherein 1.05≦x≦1.32, 0.33≦y≦0.63, 0.06≦z≦0.50, 0
Abstract:
There is provided a lithium-iron-manganese-based composite oxide capable of providing a lithium-ion secondary battery which has a high capacity retention rate in charge/discharge cycles and in which the generation of a gas caused by charge/discharge cycles is reduced. A lithium-iron-manganese-based composite oxide having a layered rock-salt structure, wherein at least a part of the surface of a lithium-iron-manganese-based composite oxide represented by the following formula (1) is coated with an inorganic material: LixM1(y-p)MnpM2(z-p)FeqO(2-δ) (1) (wherein 1.05≦x≦1.32, 0.33≦y≦0.63, 0.06≦z≦0.50, 0
Abstract:
A positive electrode active material for a lithium secondary battery, comprising a lithium-containing composite metal oxide in the form of secondary particles formed by aggregation of primary particles capable of being doped and undoped with lithium ions, each of the secondary particles having on its surface a coating layer, the positive electrode active material satisfying the following requirements (1) to (3):(1) the metal oxide has an α-NaFeO2 type crystal structure of following formula (A): Lia(NibCocM11-b-c)O2 (A) wherein 0.9≦a≦1.2, 0.9≦b
Abstract:
A positive electrode active material, which has a crystallite size α/crystallite size β ratio (α/β) of 1 to 1.75 or less, wherein the crystallite size α is within a peak region of 2θ=18.7±1° and the crystallite size β is within a peak region of 2θ=44.6±1°, each determined by a powder X-ray diffraction measurement using Cu-Kα ray, and has a composition represented by formula (I) below: Li[Lix(NiaCobMncMd)1-x]O2 (I) wherein 0≦x≦0.2, 0.3
Abstract:
A lithium-manganese composite oxide containing a lithium-iron-manganese composite oxide represented by the composition formula: Li1+x−w(FeyNizMn1−y−z)1−xO2−δ, where 0