Abstract:
A piping diagnostic device according to an exemplary aspect of the present invention includes: criteria distribution generating means for generating a criteria distribution that is statistical data of criteria data of piping based on construction information about the piping, design information about the piping, and material information about the piping; changed-state distribution generating means for generating a changed-state distribution that is statistical data of changed-state data of the piping that have changed due to aging based on at least either vibration or dynamic pressure of the piping that have changed due to aging; measurement means for measuring at least either vibration or dynamic pressure of the piping; and determining means for determining deterioration of the piping based on the criteria distribution, the changed-state distribution, and at least either vibration or dynamic pressure of the piping.
Abstract:
A first time difference calculation unit calculates a time difference Δt1 between the timing of detection of vibration that indicates the first vibration mode of a pipe P and the timing of detection of vibration that indicates a second vibration mode of the pipe P by processing a result of a measurement . A second time difference calculation unit calculates a time difference Δt2 between the timing of detection of vibration that indicates the first vibration mode of the pipe P and the timing of detection of vibration that indicates the second vibration mode of the pipe P by processing a result of another measurement. A leakage position calculation unit uses the time differences Δt1, Δt2, and a space interval I between the first vibration detection unit and the first time difference calculation unit to calculate a leakage position in the pipe P.
Abstract:
Each functional configuring unit of a leak inspection device (2000) operates in the manner that follows. A vibration acquisition unit (2020) acquires a signal indicating tubing vibrations or vibrations propagated from tubing. A filtering unit (2040) extracts a signal of a predetermined frequency band from the signal acquired by the vibration acquisition unit (2020). A characteristic value extraction unit (2060) splits the signal extracted by the filtering unit (2040) into predetermined time intervals, calculates for each split signal the absolute value of each extreme value of the magnitude of the signal, performs for each split signal a statistical process with respect to the calculated plurality of absolute values, and considers values calculated by the statistical process to be characteristic values. A leak determination unit (2080) considers inspection results to indicate the presence of a leak when a determination index value stipulated using the characteristic values is greater than a predetermined threshold.
Abstract:
Degradation of a pipe can be easily detected. A piping inspection system 1 includes an excitation unit 100, a wave detection unit 210, and a diagnosis unit 220. The excitation unit 100 excites waves of different wave modes simultaneously at a first position of a pipe 300. The wave detection unit 210 detects the waves of different wave modes at a second position of the pipe 300. The diagnosis unit 220 diagnoses degradation of the pipe 300 based on a velocity of one of the waves of different wave modes, the velocity being calculated by using a detection time difference between the waves of different wave modes.
Abstract:
In a related fluid leakage detecting device, erroneous leakage determination may occur due to a change in a state of a fluid in piping.A leakage determination system of the present invention includes a first detection means for detecting a prescribed physical quantity indicating a state of a fluid in piping, a second detection means for detecting vibration propagating through the piping, and a leakage determination means for performing leakage determination based on the physical quantity detected by the first detection means and the vibration detected by the second detection means.
Abstract:
Each functional configuring unit of a leak inspection device (2000) operates in the manner that follows. A vibration acquisition unit (2020) acquires a signal indicating tubing vibrations or vibrations propagated from tubing. A filtering unit (2040) extracts a signal of a predetermined frequency band from the signal acquired by the vibration acquisition unit (2020). A characteristic value extraction unit (2060) splits the signal extracted by the filtering unit (2040) into predetermined time intervals, calculates for each split signal the absolute value of each extreme value of the magnitude of the signal, performs for each split signal a statistical process with respect to the calculated plurality of absolute values, and considers values calculated by the statistical process to be characteristic values. A leak determination unit (2080) considers inspection results to indicate the presence of a leak when a determination index value stipulated using the characteristic values is greater than a predetermined threshold.
Abstract:
A piezoelectric vibration sensor includes a piezoelectric element which is in a form of flat plate, an element holding plate which is in a form of flat plate, and first and second support members. An electrode is arranged on at least one plane of the piezoelectric element. The piezoelectric element is joined to one plane of the piezoelectric element. The first support member and the second support member support the piezoelectric element and the element holding plate. A vibration film activates vibration of the element holding plate between the first support member and the second support member. Moreover, the element holding plate is joined to each of the first support member and the second support member through the vibration film. As a result, it is possible to obtain high sensitivity in a wide frequency range and to withstand an impact which is added from the outside.