Abstract:
Systems and methods are disclosed for providing distributed learning over a plurality of parallel machine network nodes by allocating a per-sender receive queue at every machine network node and performing distributed in-memory training; and training each unit replica and maintaining multiple copies of the unit replica being trained, wherein all unit replicas train, receive unit updates and merge in parallel in a peer-to-peer fashion, wherein each receiving machine network node merges updates at later point in time without interruption and wherein the propagating and synchronizing unit replica updates are lockless and asynchronous.
Abstract:
Methods and systems for pruning a convolutional neural network (CNN) include calculating a sum of weights for each filter in a layer of the CNN. The filters in the layer are sorted by respective sums of weights. A set of m filters with the smallest sums of weights is filtered to decrease a computational cost of operating the CNN. The pruned CNN is retrained to repair accuracy loss that results from pruning the filters.
Abstract:
Systems and methods are disclosed for providing distributed learning over a plurality of parallel machine network nodes by allocating a per-sender receive queue at every machine network node and performing distributed in-memory training; and training each unit replica and maintaining multiple copies of the unit replica being trained, wherein all unit replicas train, receive unit updates and merge in parallel in a peer-to-peer fashion, wherein each receiving machine network node merges updates at later point in time without interruption and wherein the propagating and synchronizing unit replica updates are lockless and asynchronous.
Abstract:
Security systems and methods for detecting intrusion events include one or more sensors configured to monitor an environment. A pruned convolutional neural network (CNN) is configured process information from the one or more sensors to classify events in the monitored environment. CNN filters having the smallest summed weights have been pruned from the pruned CNN. An alert module is configured to detect an intrusion event in the monitored environment based on event classifications. A control module is configured to perform a security action based on the detection of an intrusion event.
Abstract:
Methods and systems for pruning a convolutional neural network (CNN) include calculating a sum of weights for each filter in a layer of the CNN. The filters in the layer are sorted by respective sums of weights. A set of m filters with the smallest sums of weights is filtered to decrease a computational cost of operating the CNN. The pruned CNN is retrained to repair accuracy loss that results from pruning the filters.
Abstract:
Security systems and methods for detecting intrusion events include one or more sensors configured to monitor an environment. A pruned convolutional neural network (CNN) is configured process information from the one or more sensors to classify events in the monitored environment. CNN filters having the smallest summed weights have been pruned from the pruned CNN. An alert module is configured to detect an intrusion event in the monitored environment based on event classifications. A control module is configured to perform a security action based on the detection of an intrusion event.
Abstract:
Systems and methods are disclosed for parallel machine learning with a cluster of N parallel machine network nodes by determining k network nodes as a subset of the N network nodes to update learning parameters, wherein k is selected to disseminate the updates across all nodes directly or indirectly and to optimize predetermined goals including freshness, balanced communication and computation ratio in the cluster; sending learning unit updates to fewer nodes to reduce communication costs with learning convergence; and sending reduced learning updates and ensuring that the nodes send/receive learning updates in a uniform fashion.