PEPTIDE-BASED VACCINE GENERATION SYSTEM

    公开(公告)号:US20210319847A1

    公开(公告)日:2021-10-14

    申请号:US17197166

    申请日:2021-03-10

    Abstract: A method is provided for peptide-based vaccine generation. The method receives a dataset of positive and negative binding peptide sequences. The method pre-trains a set of peptide binding property predictors on the dataset to generate training data. The method trains a Wasserstein Generative Adversarial Network (WGAN) only on the positive binding peptide sequences, in which a discriminator of the WGAN is updated to distinguish generated peptide sequences from sampled positive peptide sequences from the training data, and a generator of the WGAN is updated to fool the discriminator. The method trains the WGAN only on the positive binding peptide sequences while simultaneously updating the generator to minimize a kernel Maximum Mean Discrepancy (MMD) loss between the generated peptide sequences and the sampled peptide sequences and maximize prediction accuracies of a set of pre-trained peptide binding property predictors with parameters of the set of pre-trained peptide binding property predictors being fixed.

    Adaptive Convolutional Neural Knowledge Graph Learning System Leveraging Entity Descriptions

    公开(公告)号:US20190122111A1

    公开(公告)日:2019-04-25

    申请号:US16168244

    申请日:2018-10-23

    Abstract: Systems and methods for predicting new relationships in the knowledge graph, including embedding a partial triplet including a head entity description and a relationship or a tail entity description to produce a separate vector for each of the head, relationship, and tail. The vectors for the head entity, relationship, and tail entity can be combined into a first matrix, and adaptive kernels generated from the entity descriptions can be applied to the matrix through convolutions to produce a second matrix having a different dimension from the first matrix. An activation function can be applied to the second matrix to obtain non-negative feature maps, and max-pooling can be used over the feature maps to get subsamples. A fixed length vector, Z, flattens the subsampling feature maps into a feature vector, and a linear mapping method is used to map the feature vectors into a prediction score.

Patent Agency Ranking