Abstract:
One or more techniques and/or systems are provided for identifying configuration inconsistencies between storage virtual machines across storage clusters. For example, a first storage cluster and a second storage cluster may be configured according to a disaster recovery relationship where user data and configuration data of the first storage cluster are replicated to the second storage cluster so that the second storage cluster can takeover for the first storage cluster in the event a disaster occurs at the first storage cluster. Because replication of configuration data (e.g., a name and size of a volume, a backup policy, etc.) may fail for various reasons, configuration of the first storage cluster is compared to configuration of the second storage cluster to identify a configuration difference (e.g., a new size of the volume at the first storage cluster may have failed to be replicated to a replicated volume at the second storage cluster).
Abstract:
A method, non-transitory computer readable medium and storage controller computing device that receives a configuration change request for a storage virtual machine, the configuration change request including a configuration change operation. A determination is made when configuration settings for the storage virtual machine are locked. The configuration change operation is applied to the configuration settings for the storage virtual machine when the determining indicates the configuration settings for the storage virtual machine are not locked. A failure message is sent in response to the configuration change request when the configuration settings for the storage virtual machine are determined to be locked.
Abstract:
One or more techniques and/or systems are provided for identifying configuration inconsistencies between storage virtual machines across storage clusters. For example, a first storage cluster and a second storage cluster may be configured according to a disaster recovery relationship where user data and configuration data of the first storage cluster are replicated to the second storage cluster so that the second storage cluster can takeover for the first storage cluster in the event a disaster occurs at the first storage cluster. Because replication of configuration data (e.g., a name and size of a volume, a backup policy, etc.) may fail for various reasons, configuration of the first storage cluster is compared to configuration of the second storage cluster to identify a configuration difference (e.g., a new size of the volume at the first storage cluster may have failed to be replicated to a replicated volume at the second storage cluster).
Abstract:
One or more techniques and/or systems are provided for migrating a trust relationship. For example, a first storage cluster and a second storage cluster have a disaster recovery relationship where the second storage cluster provides failover client access to replicated data, replicated from the first storage cluster to the second storage cluster, in the event the first storage cluster fails. The first storage cluster may have a trust relationship with a third storage cluster, such that data is mirrored from a volume of the first storage cluster into a mirrored volume of the third storage cluster based upon the trust relationship. In the event the first storage cluster fails over to the second storage cluster due to a disaster at the first storage cluster, the trust relationship is migrated to be between the second storage cluster and the third storage cluster for non-disruptive mirroring of data to the mirrored volume.
Abstract:
Method and system for a non-disruptive migration of a source virtual storage system from a source cluster to a destination cluster is provided. The method includes monitoring a current transfer rate for migrating information from the source cluster to the destination cluster during a migration operation; iteratively reducing a rate at which I/O requests are processed until a transfer rate for transferring the information from the source cluster to the destination cluster within the duration is reached; and entering a cutover phase for the migration operation when the virtual storage system presented by the source cluster is taken offline for the duration and after the information is migrated to the destination cluster, the virtual storage system is presented by the destination cluster.
Abstract:
One or more techniques and/or systems are provided for migrating a trust relationship. For example, a first storage cluster and a second storage cluster have a disaster recovery relationship where the second storage cluster provides failover client access to replicated data, replicated from the first storage cluster to the second storage cluster, in the event the first storage cluster fails. The first storage cluster may have a trust relationship with a third storage cluster, such that data is mirrored from a volume of the first storage cluster into a mirrored volume of the third storage cluster based upon the trust relationship. In the event the first storage cluster fails over to the second storage cluster due to a disaster at the first storage cluster, the trust relationship is migrated to be between the second storage cluster and the third storage cluster for non-disruptive mirroring of data to the mirrored volume.
Abstract:
One or more techniques and/or systems are provided for migrating a trust relationship. For example, a first storage cluster and a second storage cluster have a disaster recovery relationship where the second storage cluster provides failover client access to replicated data, replicated from the first storage cluster to the second storage cluster, in the event the first storage cluster fails. The first storage cluster may have a trust relationship with a third storage cluster, such that data is mirrored from a volume of the first storage cluster into a mirrored volume of the third storage cluster based upon the trust relationship. In the event the first storage cluster fails over to the second storage cluster due to a disaster at the first storage cluster, the trust relationship is migrated to be between the second storage cluster and the third storage cluster for non-disruptive mirroring of data to the mirrored volume.
Abstract:
Method and system for a non-disruptive migration of a source virtual storage system from a source cluster to a destination cluster is provided. The method includes monitoring a current transfer rate for migrating information from the source cluster to the destination cluster during a migration operation; iteratively reducing a rate at which I/O requests are processed until a transfer rate for transferring the information from the source cluster to the destination cluster within the duration is reached; and entering a cutover phase for the migration operation when the virtual storage system presented by the source cluster is taken offline for the duration and after the information is migrated to the destination cluster, the virtual storage system is presented by the destination cluster.
Abstract:
One or more techniques and/or systems are provided for migrating a trust relationship. For example, a first storage cluster and a second storage cluster have a disaster recovery relationship where the second storage cluster provides failover client access to replicated data, replicated from the first storage cluster to the second storage cluster, in the event the first storage cluster fails. The first storage cluster may have a trust relationship with a third storage cluster, such that data is mirrored from a volume of the first storage cluster into a mirrored volume of the third storage cluster based upon the trust relationship. In the event the first storage cluster fails over to the second storage cluster due to a disaster at the first storage cluster, the trust relationship is migrated to be between the second storage cluster and the third storage cluster for non-disruptive mirroring of data to the mirrored volume.
Abstract:
One or more techniques and/or systems are provided for identifying configuration inconsistencies between storage virtual machines across storage clusters. For example, a first storage cluster and a second storage cluster may be configured according to a disaster recovery relationship where user data and configuration data of the first storage cluster are replicated to the second storage cluster so that the second storage cluster can takeover for the first storage cluster in the event a disaster occurs at the first storage cluster. Because replication of configuration data (e.g., a name and size of a volume, a backup policy, etc.) may fail for various reasons, configuration of the first storage cluster is compared to configuration of the second storage cluster to identify a configuration difference (e.g., a new size of the volume at the first storage cluster may have failed to be replicated to a replicated volume at the second storage cluster).