Abstract:
A storage appliance arranges snapshot data and snapshot metadata into different structures, and arranges the snapshot metadata to facilitate efficient snapshot manipulation, which may be for snapshot management or snapshot restore. The storage appliance receives snapshots according to a forever incremental configuration and arranges snapshot metadata into different types of records. The storage appliance stores these records in key-value stores maintained for each defined data collection (e.g., volume). The storage appliance arranges the snapshot metadata into records for inode information, records for directory information, and records that map source descriptors of data blocks to snapshot file descriptors. The storage appliance uses a locally generated snapshot identifier as a key prefix for the records to conform to a sort constrain of the key-value store, which allows the efficiency of the key-value store to be leveraged. The snapshot metadata arrangement facilitates efficient snapshot restore, file restore, and snapshot reclamation.
Abstract:
A storage appliance arranges snapshot data and snapshot metadata into different structures, and arranges the snapshot metadata to facilitate efficient snapshot manipulation, which may be for snapshot management or snapshot restore. The storage appliance receives snapshots according to a forever incremental configuration and arranges snapshot metadata into different types of records. The storage appliance stores these records in key-value stores maintained for each defined data collection (e.g., volume). The storage appliance arranges the snapshot metadata into records for inode information, records for directory information, and records that map source descriptors of data blocks to snapshot file descriptors. The storage appliance uses a locally generated snapshot identifier as a key prefix for the records to conform to a sort constrain of the key-value store, which allows the efficiency of the key-value store to be leveraged. The snapshot metadata arrangement facilitates efficient snapshot restore, file restore, and snapshot reclamation.
Abstract:
A storage appliance arranges snapshot data and snapshot metadata into different structures, and arranges the snapshot metadata to facilitate efficient snapshot manipulation, which may be for snapshot management or snapshot restore. The storage appliance receives snapshots according to a forever incremental configuration and arranges snapshot metadata into different types of records. The storage appliance stores these records in key-value stores maintained for each defined data collection (e.g., volume). The storage appliance arranges the snapshot metadata into records for inode information, records for directory information, and records that map source descriptors of data blocks to snapshot file descriptors. The storage appliance uses a locally generated snapshot identifier as a key prefix for the records to conform to a sort constrain of the key-value store, which allows the efficiency of the key-value store to be leveraged. The snapshot metadata arrangement facilitates efficient snapshot restore, file restore, and snapshot reclamation.
Abstract:
A storage appliance arranges snapshot data and snapshot metadata into different structures, and arranges the snapshot metadata to facilitate efficient snapshot manipulation, which may be for snapshot management or snapshot restore. The storage appliance receives snapshots according to a forever incremental configuration and arranges snapshot metadata into different types of records. The storage appliance stores these records in key-value stores maintained for each defined data collection (e.g., volume). The storage appliance arranges the snapshot metadata into records for inode information, records for directory information, and records that map source descriptors of data blocks to snapshot file descriptors. The storage appliance uses a locally generated snapshot identifier as a key prefix for the records to conform to a sort constrain of the key-value store, which allows the efficiency of the key-value store to be leveraged. The snapshot metadata arrangement facilitates efficient snapshot restore, file restore, and snapshot reclamation.
Abstract:
Various embodiments are generally directed an apparatus and method for receiving a recovery point objective for a workload, the recovery point objective comprising an amount of time in which information for the workload will be lost if a failure occurs, and determining a service level objective for a replication transfer based on the recovery point objective, the replication transfer to replicate information on a destination node to maintain the recovery point objective. Various embodiments include dynamically controlling one or more resources to replicate the information on the destination node based on the service level objective and communicating information for the replication transfer from the source node to the destination node.
Abstract:
A storage appliance arranges snapshot data and snapshot metadata into different structures, and arranges the snapshot metadata to facilitate efficient snapshot manipulation, which may be for snapshot management or snapshot restore. The storage appliance receives snapshots according to a forever incremental configuration and arranges snapshot metadata into different types of records. The storage appliance stores these records in key-value stores maintained for each defined data collection (e.g., volume). The storage appliance arranges the snapshot metadata into records for inode information, records for directory information, and records that map source descriptors of data blocks to snapshot file descriptors. The storage appliance uses a locally generated snapshot identifier as a key prefix for the records to conform to a sort constrain of the key-value store, which allows the efficiency of the key-value store to be leveraged. The snapshot metadata arrangement facilitates efficient snapshot restore, file restore, and snapshot reclamation.
Abstract:
A remote data storage system for providing one or more mobile devices with a remote data store. The system may include a cloud platform with a storage management application and a data store. A mobile storage application may operate on a mobile device to enable the mobile device to interact with the storage management application. The storage management application may condition data for exchange between the mobile device and the data store. The conditioning of data may include the replacement of duplicate data subsets with references to equivalent data subsets. Other embodiments are described and claimed.
Abstract:
A storage appliance arranges snapshot data and snapshot metadata into different structures, and arranges the snapshot metadata to facilitate efficient snapshot manipulation, which may be for snapshot management or snapshot restore. The storage appliance receives snapshots according to a forever incremental configuration and arranges snapshot metadata into different types of records. The storage appliance stores these records in key-value stores maintained for each defined data collection (e.g., volume). The storage appliance arranges the snapshot metadata into records for inode information, records for directory information, and records that map source descriptors of data blocks to snapshot file descriptors. The storage appliance uses a locally generated snapshot identifier as a key prefix for the records to conform to a sort constrain of the key-value store, which allows the efficiency of the key-value store to be leveraged. The snapshot metadata arrangement facilitates efficient snapshot restore, file restore, and snapshot reclamation.
Abstract:
Various embodiments are generally directed an apparatus and method for receiving a recovery point objective for a workload, the recovery point objective comprising an amount of time in which information for the workload will be lost if a failure occurs, and determining a service level objective for a replication transfer based on the recovery point objective, the replication transfer to replicate information on a destination node to maintain the recovery point objective. Various embodiments include dynamically controlling one or more resources to replicate the information on the destination node based on the service level objective and communicating information for the replication transfer from the source node to the destination node.