Abstract:
A motor may include a stator having coil groups of plural phases and a connector, the stator comprising a plurality of split stators. Each of the split stators may include a split core having an arc-shaped core back section and a tooth section, an insulator, a coil which has a lead-out line that is connected to the connector. The insulator may have a first void extending between a first inner wall and a first outer wall. The first inner wall may have a lead-in groove. The stator may have a support ring disposed on the upper side of the first void. The support ring may have a second void extending between a second inner wall and a second outer wall. A plurality of lead-out lines of different phases may respectively accommodated in the first void and the second void.
Abstract:
A case includes a cylindrical housing arranged to hold a stator, and having an opening portion at a top thereof; and a motor cover fitted to an upper side of the housing, and arranged to cover an upper side of the stator. A busbar unit includes a sensor busbar electrically connected to a rotation sensor, and a busbar holder arranged at the opening portion to hold the sensor busbar. The case includes a case through hole arranged to open into a space outside of the case. The busbar holder includes a cylindrical holder body portion having at least a portion thereof arranged radially inside of the opening portion; and a protruding portion arranged to protrude out of the case, and having at least a portion thereof arranged in the case through hole. A gap is defined circumferentially between the protruding portion and an edge of the case through hole.
Abstract:
A motor includes a bus bar assembly including a bus bar, a wiring member, and a bus bar holder. The bus bar holder includes a main body portion, a bottom portion, and a first circuit board support portion. The wiring member includes a circuit board connection terminal electrically connected to the circuit board. The circuit board connection terminal includes a contact portion connected to the circuit board, and applies force to the circuit board through the contact portion. The first circuit board support portion is disposed at a region of the bottom portion to define a side at which the circuit board connection terminal is located when viewed from one direction. The first circuit board support portion and the contact portion are located at different positions when viewed from the one direction.
Abstract:
A motor may include a stator having coil groups of plural phases and a connector, the stator comprising a plurality of split stators. Each of the split stators may include a split core having an arc-shaped core back section and a tooth section, an insulator, a coil which has a lead-out line that is connected to the connector. The insulator may have a first void extending between a first inner wall and a first outer wall. The first inner wall may have a lead-in groove. The stator may have a support ring disposed on the upper side of the first void. The support ring may have a second void extending between a second inner wall and a second outer wall. A plurality of lead-out lines of different phases may respectively accommodated in the first void and the second void.
Abstract:
A motor includes a bus bar assembly including a bus bar, a wiring member, and a bus bar holder. The bus bar holder includes a main body portion, a bottom portion, and a first circuit board support portion. The wiring member includes a circuit board connection terminal electrically connected to the circuit board. The circuit board connection terminal includes a contact portion connected to the circuit board, and applies force to the circuit board through the contact portion. The first circuit board support portion is disposed at a region of the bottom portion to define a side at which the circuit board connection terminal is located when viewed from one direction. The first circuit board support portion and the contact portion are located at different positions when viewed from the one direction.
Abstract:
A manufacturing method comprising: a process S1 of forming a plate member which has a substantially annular scrap portion having a center hole through an axial direction and a core plate portion defining a portion of the core pieces arranged continuously with the scrap portion on a radially inner side of the scrap portion; a process S2 of forming a laminated body, which has the core pieces, by laminating the plate member; a process S3 of providing the laminated body and the shaft in a mold; a process S4 of forming a molding body by inserting a molten resin or a nonmagnetic material in the mold and forming the filling portion of which at least a portion is located between the core pieces; and a process S5 of separating the scrap portion and the core plate portion.