Abstract:
There is provided a flexible substrate having excellent flexibility and gas barrier properties. A flexible substrate 100 according to the present invention includes: a base material 20 including an inorganic glass 10 and resin layers 11 and 11′ placed on both sides of the inorganic glass 10; and an inorganic thin film 12 placed on a side of one of the resin layers where the inorganic glass is not placed, wherein the inorganic thin film 12 is formed on at least a peripheral edge of one surface of the base material.
Abstract:
There is provided a flexible substrate having excellent flexibility and gas barrier properties. A flexible substrate 100 according to the present invention includes: a base material 20 including an inorganic glass 10 and resin layers 11 and 11′ placed on both sides of the inorganic glass 10; and an inorganic thin film 12 placed on a side of one of the resin layers where the inorganic glass is not placed, wherein the inorganic thin film 12 is formed on at least a peripheral edge of one surface of the base material.
Abstract:
There is provided a flexible substrate having excellent flexibility and gas barrier properties. A flexible substrate 100 according to the present invention includes: a base material 20 including an inorganic glass 10 and resin layers 11 and 11′ placed on both sides of the inorganic glass 10; and an inorganic thin film 12 placed on a side of one of the resin layers where the inorganic glass is not placed, wherein the inorganic thin film 12 is formed on at least a peripheral edge of one surface of the base material.
Abstract:
There is provided a flexible substrate having excellent flexibility and gas barrier properties. A flexible substrate 100 according to the present invention includes: a base material 20 including an inorganic glass 10 and resin layers 11 and 11′ placed on both sides of the inorganic glass 10; and an inorganic thin film 12 placed on a side of one of the resin layers where the inorganic glass is not placed, wherein the inorganic thin film 12 is formed on at least a peripheral edge of one surface of the base material.
Abstract:
In a conductive laminate, a transparent conductive thin film laminate 2 including at least two transparent conductive thin films and a metal layer 3 are formed in this order on at least one surface of a transparent base. In the transparent conductive thin film laminate 2, a first transparent conductive thin film 21 that is closest to the metal layer 3 is a metal oxide layer, or a composite metal oxide layer containing a principal metal and at least one impurity metal. Transparent conductive thin film 22 other than the first transparent conductive thin film is a composite metal oxide layer containing a principal metal and at least one impurity metal. The content ratio of impurity metal in the first transparent conductive thin film is not the highest of content ratios of impurity metal in the transparent conductive thin films which form the transparent conductive thin film laminate 2.
Abstract:
There is provided a transparent substrate which is excellent in dimensional stability, which significantly prevents the progress of a crack in an inorganic glass and the rupture of the inorganic glass, and which is excellent in flexibility. A transparent substrate according to an embodiment of the present invention includes: an inorganic glass having a thickness of 10 μm to 100 μm; and a resin layer on one side, or each of both sides, of the inorganic glass, wherein: a ratio of a total thickness of the resin layer to a thickness of the inorganic glass is 0.9 to 4; the resin layer has a modulus of elasticity at 25° C. of 1.5 GPa to 10 GPa; and the resin layer has a fracture toughness value at 25° C. of 1.5 MPa·m1/2 to 10 MPa·m1/2.