Abstract:
An amplifier system is disclosed, configured to apply a signal component separator algorithm such that the first phase modulated signal and the second phase modulated signal are allowed to take on several continuous amplitude levels in order to achieve a maximum efficiency at each desired output signal power level, without restricting the input signal power fed to the power amplifiers to a constant level, wherein for each desired output signal power level, the digital signal component separator assigns an amplitude and phases of input signals that result in a maximum instantaneous power efficiency at the amplified output signal combined with an unmatched/non-isolating combiner (e.g. Chireix combiner).
Abstract:
An amplifier system is disclosed, configured to apply a signal component separator algorithm such that the first phase modulated signal and the second phase modulated signal are allowed to take on several continuous amplitude levels in order to achieve a maximum efficiency at each desired output signal power level, without restricting the input signal power fed to the power amplifiers to a constant level, wherein for each desired output signal power level, the digital signal component separator assigns an amplitude and phases of input signals that result in a maximum instantaneous power efficiency at the amplified output signal combined with an unmatched/non-isolating combiner (e.g. Chireix combiner).