Abstract:
A method and apparatus determine a transmission beam for downlink transmissions, and provides first beamforming instructions for forming the transmission beam to a transmission path. The method and apparatus also determine at least one receiving beam that is a first receiving beam, and at least one receiving beam that is a second receiving beam. A first antenna sub-array is configured to provide a first plurality of concurrent receiving beams and a second antenna sub-array is configured to provide a second plurality of concurrent receiving beams, providing second beamforming instructions, for forming at least the first receiving beam and at least the second receiving beams, to a first receiving path and a second receiving path, respectively.
Abstract:
An amplifier system is disclosed, configured to apply a signal component separator algorithm such that the first phase modulated signal and the second phase modulated signal are allowed to take on several continuous amplitude levels in order to achieve a maximum efficiency at each desired output signal power level, without restricting the input signal power fed to the power amplifiers to a constant level, wherein for each desired output signal power level, the digital signal component separator assigns an amplitude and phases of input signals that result in a maximum instantaneous power efficiency at the amplified output signal combined with an unmatched/non-isolating combiner (e.g. Chireix combiner).
Abstract:
A method comprises selecting a beam to be scheduled for a slot that is upcoming, and selecting a terminal device to be scheduled in the selected beam. Selection of the terminal device is based on the terminal device considering the selected beam as its best beam. Physical resource blocks are allocated to the terminal device, and a beam configuration to be used for the selected beam is chosen based in part on user traffic and load distribution. A switching event is triggered. The switching event comprises producing the chosen beam configuration by providing a beamforming command and using a control line controlling a switch network comprised in phase shifters to steer the beam. The phase shifters are comprised in a radio frequency front-end unit comprising a plurality of antenna columns. The phase shifters are placed in front of selected antenna sub-arrays comprised in the plurality of antenna columns.
Abstract:
An amplifier system is disclosed, configured to apply a signal component separator algorithm such that the first phase modulated signal and the second phase modulated signal are allowed to take on several continuous amplitude levels in order to achieve a maximum efficiency at each desired output signal power level, without restricting the input signal power fed to the power amplifiers to a constant level, wherein for each desired output signal power level, the digital signal component separator assigns an amplitude and phases of input signals that result in a maximum instantaneous power efficiency at the amplified output signal combined with an unmatched/non-isolating combiner (e.g. Chireix combiner).