Abstract:
A coreless glass fiber cable is made of a plurality of individual substantially untwisted glass fiber rovings twisted together. Prior to twisting but during the twisting operation certain of the rovings are impregnated with one component of an elastomeric resin with the remainder of the rovings impregnated with the second component of the elastomeric resin. The impregnated rovings are spirally twisted together in the same direction at substantially the same helical angle, the two components of the elastomeric resin impregnating the rovings mixing with each other at the junction of the intertwining of the rovings to form a cured elastomer spacing the glass fiber rovings and filaments making up the rovings from each other. The layed up glass fiber cable is fed back on itself and subsequent layers of impregnated rovings plied together over the initial layers. The subsequently applied layers are applied at the same helical angle as the initial layer. The cable, although useful for other purposes, is particularly useful in the manufacture of endless track for track vehicles, the endless track comprising a plurality of individual track sections strung along a cable of the type mentioned.
Abstract:
A composite glass fiber cable is disclosed having a negative linear coefficient of thermal expansion which is controllable by variation of the twist of helically plied glass roving to substantially zero change in length over a wide variation in environmental temperatures under varying load conditions.
Abstract:
A coreless glass fiber cable is made of a plurality of individual substantially untwisted glass fiber rovings twisted together. Certain of the rovings are impregnated with one component of an elastomeric resin with the remainder of the rovings impregnated with the second component of the elastomeric resin. The impregnated rovings are spirally twisted together in the same direction at substantially the same helical angle, the two components of the elastomeric resin impregnating the rovings mixing with each other at the junction of the intertwining of the rovings to form a cured elastomer spacing the glass fiber rovings and filaments making up the rovings from each other. The layed up glass fiber cable is fed back on itself and subsequent layers of impregnated rovings plied together over the initial layers. The subsequently applied layers are applied at the same helical angle as the initial layer. The cable, although useful for other purposes, is particularly useful in the manufacture of endless track for track vehicles, the endless track comprising a plurality of individual track sections strung along a cable of the type mentioned.