Abstract:
A belt for an elevator system includes a plurality of tension members arranged along a belt width and extending longitudinally along a length of the belt, a jacket material at least partially encapsulating the plurality of tension members, and a primary overlay layer applied to one or more of the plurality of tension members or at least a portion of the jacket material. An elevator system includes a hoistway, an elevator car movable therein, and a belt operably connected to the elevator car to suspend and/or drive the elevator car along the hoistway. The belt includes a plurality of tension members arranged along a belt width and extending longitudinally along a belt length, a jacket material at least partially encapsulating the plurality of tension members, and a primary overlay layer applied to one or more of the plurality of tension members or at least a portion of the jacket material.
Abstract:
A method of making a hoist cable capable of continuous resistance monitoring includes applying an electrically-insulating material to at least one strand of a wire rope such that a length of the strand is electrically insulated and an end of the strand is electrically conductive. The end of the at least one strand is joined to other strands of the wire rope such that at least two strands are electrically connected at a free end of the wire rope. A method of inspecting the hoist cable includes transmitting a first electrical signal through a first strand from a hoist drum to a free end of the wire rope and receiving the first electrical signal through a second strand at the hoist drum, the first and second strands being electrically connected at the free end. Using the first electrical signal, the resistance of the wire rope is calculated.
Abstract:
A single-strand cord rubberized in situ (C) comprising: an internal layer of the cord (CT1) comprising N1 internal thread(s), an external layer of the cord (CT3) comprising N3 external threads wound helically around the internal layer of the cord, a rubber composition (20) positioned between the internal layer of the cord and the external layer of the cord. The rubber composition (20) comprises a compound of formula (I) or (II) or a salt of this compound: in which each R1, R2, R3 and R4 group represents, independently of one another, an —OH, —O-Alkyl or —O(C)O-Alkyl group.
Abstract:
A rubber-reinforcing steel cord embedded in a rubber product has a stranded structure including a core strand, and a plurality of sheath strands intertwined around an outer circumferential surface of the core strand; wherein a lubricant is provided between wires that constitute the core strand.
Abstract:
A method of making a hoist cable capable of continuous resistance monitoring includes applying an electrically-insulating material to at least one strand of a wire rope such that a length of the strand is electrically insulated and an end of the strand is electrically conductive. The end of the at least one strand is joined to other strands of the wire rope such that at least two strands are electrically connected at a free end of the wire rope. A method of inspecting the hoist cable includes transmitting a first electrical signal through a first strand from a hoist drum to a free end of the wire rope and receiving the first electrical signal through a second strand at the hoist drum, the first and second strands being electrically connected at the free end. Using the first electrical signal, the resistance of the wire rope is calculated.
Abstract:
A cord rubberized in situ (C) comprising: an internal layer of the cord (CT1), an external layer of the cord (CT3), a rubber composition (20) positioned between the internal layer of the cord and the external layer of the cord. The rubber composition (20) comprises a compound of formula (I): in which X and Y represent, independently of each other, an alkali metal or alkaline earth metal cation.
Abstract:
An embodiment of a wellbore cable comprises a cable core, at least a first armor wire layer comprising a plurality of strength members and surrounding the cable core, and at least a second armor wire layer comprising a plurality of strength members surrounding the first armor wire layer, the second armor wire layer covering a predetermined percentage of the circumference of the first armor wire layer to prevent torque imbalance in the cable.
Abstract:
A metal cord (C-1) having two layers (Ci, Ce) of 3+N construction, rubberized in situ, comprising an inner layer (Ci) formed from three core wires (10) of diameter d1 wound together in a helix with a pitch p1 and an outer layer (Ce) of N wires (11) N varying from 6 to 12, of diameter d2, which are wound together in a helix with a pitch p2 around the inner layer (Ci), said cord being characterized in that it has the following characteristics (d1, d2, p1 and p2 being in mm): 0.08
Abstract:
An elevator includes an elevator car, a counterweight and suspension roping, which connects the elevator car and counterweight to each other, and which suspension roping includes one or more ropes, which include a load-bearing composite part, which includes reinforcing fibers in a polymer matrix. The elevator car and the counterweight are arranged to be moved by exerting a vertical force on at least the elevator car or on the counterweight. The elevator includes a device separate from the suspension roping for exerting the force on at least the elevator car or on the counterweight.
Abstract:
Metal cord of K×(L+M) construction. K elementary strands assembled in a helix, with pitch PK, each having a cord with L wire inner layer of diameter d1, and M wire outer layer of diameter d2, in a helix with pitch p2 around the inner layer; with (in mm): 0.10