Abstract:
A torque coil (two-layer coil structure) of the disclosed embodiments includes an inner coil formed by spirally winding metal wire, and an outer coil arranged to be in close contact with the outer periphery of the inner coil and formed by spirally winding metal wire. A winding direction of the inner coil and a winding direction of the outer coil are opposite from each other, and when the torque coil is twisted in the circumferential direction in which the diameter of the inner coil is increased, a change amount of the diameter of the outer coil is larger than a change amount of the diameter of the inner coil. The two-layer coil structure has high twisting rigidity, thus suppressing the occurrence of kinks due to rotational resistance.
Abstract:
An elevator rope comprising an elastomer coated, multistrand steel wire cable is claimed. In such a cable strands have a lay-length of at least 6.5 times the diameter of the bare cable diameter D. The cable is further coated with an elastomeric jacket, which adheres to the strands with a pull-out force not less than 15×D+15 newton per mm. The advantages of such an elevator rope are amongst others its limited elongation, its reduced diameter and its improved fatigue life.
Abstract:
In a tire the strength of steel cord and the resilience of rubber are a successful combination. However, in some specific areas of a tire, more elongation is expected from the steel cord, while still a sufficient degree of stiffness is expected. A steel cord is presented that has these properties. The steel cord comprises two or more steel elements that are twisted together. The steel elements comprise one or more steel filaments. In total the steel cord comprises ‘N’ filaments, each with a cross sectional area ‘A’. When the steel elements are individualised out of the steel cord they show a helix pitch length of ‘Lo’, while a single pitch has a centre line length of ‘S’. The inventive steel cord shows a ‘P’ value of at least 50 newton, wherein P=πNE (A/S)2. Further methods are presented to produce this steel cord.
Abstract:
A braided structure that includes a core and a sheath is provided. The core includes a yarn formed at least in part from an aromatic polymer (e.g., an aromatic polyester/liquid crystalline polymer or an aramid polymer), and the sheath, which includes a plurality of ultra high molecular weight polyolefin yarns, is braided around the core. The sheath has an overall diameter ranging from about 60 micrometers to about 650 micrometers. Despite its small diameter, the braided structure can be creep resistant and abrasion resistant while at the same time exhibiting low elongation, a high load at break, and high stiffness. The braided structure can be used in medical applications such as sutures, load bearing orthopedic applications, artificial tendons/ligaments, fixation devices, actuation cables, components for tissue repair, etc.
Abstract:
A steel cord for reinforcement of rubber articles, whose cord strength is enhanced by preventing occurrence of preceding break of the outermost layer filaments in the steel cord having a multi-twisted structure, and a pneumatic tire using it as a reinforcing material are provided.In a steel cord for reinforcement of rubber articles having a multi-twisted structure in which a plurality of strands are twisted together, which strands have a layered twisted structure in which a plurality of steel filaments are twisted together, dc/ds, which represents the ratio between dc, the diameter of outermost layer sheath filaments constituting the outermost layer sheath of a core strand, and ds, the diameter of outermost layer sheath filaments constituting the outermost layer sheath of sheath strands, is 1.05 to 1.25.
Abstract:
A steel cord (30) with a high elongation at break of at least 5% comprises n strands (20), each of said strands (20) has m filaments (10) twisted together, n ranges from 2 to 7. m ranges from 2 to 9. The strands and the filaments are twisted in a same direction. The lay length of the cord is Lc and the lay length of said strand is Ls. The ratio of Ls to Lc (Ls/Lc) ranges from 0.25 to 1. Lc ranges from 16 mm to 26 mm. The strands are helically preformed. The E-modulus of the cord is more than 150000 N/mm2. The helical preforming of the strands allows to obtain a high elongation at break and a high E-modulus despite its long lay length Lc.
Abstract:
A steel cord for reinforcing a rubber article which can improve the cut resistant property in the case of treading on an obtusely or sharply pointed projection without decreasing the strength in the axial direction of the cord and without increasing the tire weight, as well as a tire utilizing the same as a reinforcing material, are provided.The steel cord for reinforcing a rubber article has a multi-twisted structure formed by twisting a plurality of sheath strands (2) formed by twisting a plurality of wires around a core strand (2) formed by twisting a plurality of wires, and the core strand (1) and the sheath strands (2) are constituted of an at least 2-layer-twisted structure formed by twisting core wires and sheath wires respectively. In this case the relationship represented by the following formula 1.8≦[(S·cos2α)/{r·(φ1+φ2)}]×100≦4.2 is satisfied, wherein φ1: the diameter of an outermost wire of the strand (1), φ2: the diameter of an outermost wire of the strand (2), r: the center distance between the strand (1) and the strand (2), S: the cross section of the strand (2), and α: the twist angle of the strand (2).
Abstract:
An annular metal cord includes an annular core portion formed in an annular shape, and an outer layer portion spirally wound around the annular core portion while running over an annular circumference thereof plural times and covering an outer peripheral surface of the annular core portion. Each of the annular core portion and the outer layer portion are formed by a strand material which is formed by intertwisting a plurality of metal filaments. The annular core portion and the outer layer portion are formed by a continuous strand material.
Abstract:
Metal cables of improved fatigue strength, which are particularly suitable for use in an oblique folded ply of metal cables for tire tread reinforcement, comprise a visible outer layer of strands with each strand being formed of at least two elementary wires, the pitch of the strands being less than the pitch of the elementary wires, these two pitches being of the same direction (S or Z).