Abstract:
A boundary protection method and system of a radiation detection robot. The boundary protection method comprises: a first laser radar and a second laser radar are arranged diagonally, a first marking rod and a second marking rod are arranged diagonally; a boundary of an interlocking zone is defined by the first laser radar, the second laser radar, the first marking rod and the second marking rod; the object to be detected is placed in the interlocking zone; the radiation detection robot uses rays to detect the object to be detected in the interlocking zone; an early warning zone is provided outside the interlocking zone; wherein when it is detected that a person or object has intruded into the interlocking zone, the radiation detection robot stops emitting rays; and when it is detected that a person or object has intruded into the early warning zone, a warning is issued directly.
Abstract:
The present disclosure proposes a security inspection equipment and a radiation detection method, and relates to the field of security inspection. The security inspection equipment according to the present disclosure comprises: a ray emitter; and a radiation detector comprising a forescatter detector, the forescatter detector and the ray emitter located on opposite sides of an object to be detected; wherein the radiation detector further comprises at least one of the following detectors: a backscatter detector located between the ray emitter and the object to be detected; or a transmission detector wherein the transmission detector and the ray emitter located on opposite sides of an object to be detected. Such a security inspection equipment has a forescatter detector, which can be used in combination with backscatter detector, to reduce detection dead angles, and thus the detection of the internal information on the opposite side of the ray source can be optimized; the forescatter detector can be used in combination with the transmission detector, and thus a simultaneous detection of high-density and low-density substances can be realized, the detection effect of the object to be detected can be optimize, and the detection accuracy can be improved.
Abstract:
The disclosure provides a whole-course visualization system for logistics articles, including: an information collecting subsystem, including a plurality of information collecting units, which are respectively deployed at different sites along a logistics route, and configured to collect ID information of a parcel and acquire image information of an article in the parcel; and an information center processing subsystem, configured to store and manage data of the ID information and image information collected by and sent from the information collecting units, and send the stored data to the information collecting units according to requests from information collecting units; wherein the information collecting units compare data sent from the information center processing subsystem with the ID information and image information collected by information collecting units, and determine whether the collected ID information and image information are consistent with the data sent from information center processing subsystem.