Abstract:
The present disclosure provides a gamma camera imaging method and a gamma camera imaging device. The method includes: selecting, from energy spectrums captured by a gamma camera on one or more radioactive materials, one or more energy ranges of each radioactive material among the one or more radioactive materials as one or more monitored energy regions of the radioactive material; performing image reconstruction on the monitored energy regions of each radioactive material among the one or more radioactive materials; performing normalization on images obtained through the image reconstruction; and performing superimposing on the normalized images to form a composite image.
Abstract:
The disclosure provides a collimator assembly, comprising at least at least two collimators configured to be moveable relative to each other such that the collimator assembly is switchable between at least two collimation modes; in respective collimation modes, the at least two collimators are superposed with each other in a thickness direction of the collimator assembly, such that the collimator assembly presents different combined patterns for collimating and shielding rays incident onto the collimator assembly and that the collimator assembly has corresponding ray shielding thickness for effectively shielding rays.
Abstract:
A method for patrol inspecting and locating a radioactive substance, comprising: providing a background radioactive intensity value of environment; collecting radioactive intensity values from a inspecting region by a detector at a plurality of sampling points on a patrol inspection route; calculating a radioactive intensity distribution in the inspecting region on basis of the collected radioactive intensity values and the background radioactive intensity value; and determining a position of the radioactive substance on basis of the radioactive intensity distribution. Furthermore, a device for patrol inspecting and locating a radioactive substance comprises: two or more detectors configured to collect radioactive intensity values from a inspecting region around a patrol inspection route, at each of a plurality of sampling points on the patrol inspection route; and a movable carrier configured to carry the detector and to move along the patrol inspection route to pass by the sampling points. The method and device can obtain the position and the radioactive intensity distribution of the radioactive substance within the inspecting region on basis of the multiple-point observation on the patrol inspection route.
Abstract:
The present invention discloses a detector. The detector includes a detector crystal, configured to detect incident rays therein; a plurality of moderator layers, configured to moderate neutrons entering the moderator layer; and a plurality of converter layers, configured to react with said moderated neutrons. The moderator layers and the converter layers are overlapped with each other, and the moderator layers and the converter layers are located outside the detector crystal.
Abstract:
A method for patrol inspecting and locating a radioactive substance, comprising: providing a background radioactive intensity value of environment; collecting radioactive intensity values from a inspecting region by a detector at a plurality of sampling points on a patrol inspection route; calculating a radioactive intensity distribution in the inspecting region on basis of the collected radioactive intensity values and the background radioactive intensity value; and determining a position of the radioactive substance on basis of the radioactive intensity distribution. Furthermore, a device for patrol inspecting and locating a radioactive substance comprises: two or more detectors configured to collect radioactive intensity values from a inspecting region around a patrol inspection route, at each of a plurality of sampling points on the patrol inspection route; and a movable carrier configured to carry the detector and to move along the patrol inspection is route to pass by the sampling points. The method and device can obtain the position and the radioactive intensity distribution of the radioactive substance within the inspecting region on basis of the multiple-point observation on the patrol inspection route.
Abstract:
The present invention discloses a detector. The detector includes a detector crystal, configured to detect incident rays therein; a plurality of moderator layers, configured to moderate neutrons entering the moderator layer; and a plurality of converter layers, configured to react with said moderated neutrons. The moderator layers and the converter layers are overlapped with each other, and the moderator layers and the converter layers are located outside the detector crystal.
Abstract:
A method and device for detecting radioactive sources is disclosed. In one aspect, an example method includes measuring, by a detector, a count rate curve of an inspection object while the inspection object moves through the detector. Pattern recognition is performed on the count rate curve. Whether there are radioactive sources in the inspection object is determined according to a result of the pattern recognition, and if there are radioactive sources in the inspection object, a type of the radioactive sources is determined.