Abstract:
A method for patrol inspecting and locating a radioactive substance, comprising: providing a background radioactive intensity value of environment; collecting radioactive intensity values from a inspecting region by a detector at a plurality of sampling points on a patrol inspection route; calculating a radioactive intensity distribution in the inspecting region on basis of the collected radioactive intensity values and the background radioactive intensity value; and determining a position of the radioactive substance on basis of the radioactive intensity distribution. Furthermore, a device for patrol inspecting and locating a radioactive substance comprises: two or more detectors configured to collect radioactive intensity values from a inspecting region around a patrol inspection route, at each of a plurality of sampling points on the patrol inspection route; and a movable carrier configured to carry the detector and to move along the patrol inspection route to pass by the sampling points. The method and device can obtain the position and the radioactive intensity distribution of the radioactive substance within the inspecting region on basis of the multiple-point observation on the patrol inspection route.
Abstract:
X-ray scanning methods and systems are provided in embodiments of the present inventions. According to one illustrative implementation, an exemplary method may comprise: collecting background data when no X-ray is emitted; collecting air data when X-rays are emitted and there is no object to be scanned in an inspection channel; scanning an object to collect original scanning data; and preprocessing the original scanning data according to the background data and the air data to acquire scanned image data. In some embodiments, when performing an X-ray scanning of a static object, implementations may measure the background data and the air data and process the scanning data, thereby solving noise issues caused by mechanical vibration and thus improving the measurement accuracy.
Abstract:
A scanning and imaging apparatus comprises a ray source configured to generate an X-ray and a detection device configured to receive an X-ray transmitted through an inspected object, wherein the ray source is configured to image the inspected object by emitting the X-ray to the inspected object. A radioactivity detector is configured to detect whether the inspected object comprises radioactive material synchronously with the process of scanning implemented by the scanning and imaging apparatus. In a case that the radioactivity detector detects radioactive material, an actual position of the radioactive material in an X-ray image of the inspected object obtained by the scanning and imaging apparatus is marked in the image. The above solutions improve the accuracy of displaying the position of the radioactive source in the X-ray image. Further, inspection of radioactive material can be implemented while scanning an image.
Abstract:
A method for patrol inspecting and locating a radioactive substance, comprising: providing a background radioactive intensity value of environment; collecting radioactive intensity values from a inspecting region by a detector at a plurality of sampling points on a patrol inspection route; calculating a radioactive intensity distribution in the inspecting region on basis of the collected radioactive intensity values and the background radioactive intensity value; and determining a position of the radioactive substance on basis of the radioactive intensity distribution. Furthermore, a device for patrol inspecting and locating a radioactive substance comprises: two or more detectors configured to collect radioactive intensity values from a inspecting region around a patrol inspection route, at each of a plurality of sampling points on the patrol inspection route; and a movable carrier configured to carry the detector and to move along the patrol inspection is route to pass by the sampling points. The method and device can obtain the position and the radioactive intensity distribution of the radioactive substance within the inspecting region on basis of the multiple-point observation on the patrol inspection route.
Abstract:
A method and device for detecting radioactive sources is disclosed. In one aspect, an example method includes measuring, by a detector, a count rate curve of an inspection object while the inspection object moves through the detector. Pattern recognition is performed on the count rate curve. Whether there are radioactive sources in the inspection object is determined according to a result of the pattern recognition, and if there are radioactive sources in the inspection object, a type of the radioactive sources is determined.
Abstract:
A system and method for positioning radioactive material are provided. A scanning and imaging apparatus comprises a ray source configured to generate an X-ray and a detection device configured to receive an X-ray transmitted through an inspected object, wherein the ray source is configured to image the inspected object by emitting the X-ray to the inspected object. A radioactivity detector is configured to detect whether the inspected object comprises radioactive material synchronously with the process of scanning implemented by the scanning and imaging apparatus. In a case that the radioactive detector detects radioactive material, an actual position of the radioactive material in an X-ray image of the inspected object obtained by the scanning and imaging apparatus is marked in the image. The above solutions improve the accuracy of displaying the position of the radioactive source in the X-ray image. Further, inspection of radioactive material can be implemented while scanning an image. In this way, an error in the correspondence between inspection results of two systems when the two systems operate independently is avoided.