Abstract:
The present disclosure provides a mobile back scattering imaging security inspection apparatus, comprising: a back scattering scanner (2), a detector (3), a controller (4), and a movable stage (1) configured to carry the back scattering scanner, the detector and the controller and being movable with respect to the object to be inspected; wherein the back scattering scanner is a distributed X-ray source comprising a plurality of target points (201), each of which is able to emit the ray beam individually, and wherein the back scattering scanner, the detector and the controller perform an imaging security inspection operation on the object to be inspected during moving along with the movable stage with respect to the object.
Abstract:
The present disclosure provides an X-ray generator with adjustable collimation. The X-ray generator comprises: an assembly of X-ray source, which includes an X-ray tube having a cathode and an anode and a front collimator; a high voltage generator, which is disposed in an extended chamber of a housing for the X-ray tube and which is used for supplying a direct current high voltage between the cathode and the anode of the X-ray tube to excite X-ray beams; a collimation adjustment unit, which is rotatably disposed outside of the front collimator and which is used for adjusting fan-type X-ray beams into continuous pencil-type X-ray beams; and a cooling unit, which is independently mounted to the X-ray tube and which is used for cooling the anode of the X-ray tube; wherein, the assembly of X-ray source, the high voltage generator, the collimation adjustment unit and the cooling unit are integrated as a whole. The X-ray generator with adjustable collimation according to the disclosure has a compact construction, which is helpful in miniaturization, modularization and high efficiency of a security detection equipment.
Abstract:
Disclosed is an integrated flying-spot X-ray apparatus comprising a ray generator configured to generate the X-ray, a revolving collimator device provided thereon with at least one aperture and arranged to be rotatable about the ray generator, a frameless torque motor configured to drive the revolving collimator device to rotate about the ray generator, and a cooling device configured to cool the ray generator, wherein the ray generator, the revolving collimator device, the frameless torque motor and the cooling device are mounted on an integrated mounting frame. Compared with the prior art, the integrated flying-spot X-ray apparatus according to the present disclosure has a simple and compact structure and is used as a kernel apparatus for fields of safety inspection and medical treatment.
Abstract:
The present invention discloses a back-scatter human body security inspection system, capable of detecting a radioactive matter carried by the human body, comprising: a radiation source configured to generate radiation rays, a flying spot forming device, configured to modulate the radiation rays from the radiation source, so as to form flying spot scanning beams for scanning the human body to be detected, a detector configured to detect radiation rays from the human body to be detected and output a signal characterizing a dose of the radiation rays, a control and data processing device, configured to process the signal outputted from the detector to obtain a radiation image of the human body to be detected. The detector detects the radiation rays from the radiation source scattered by the human body to be detected, separately at different times, and the radiation rays from the radioactive matter carried by the human body to be detected. In the present invention, the application ranges of the back-scatter human body scanning apparatus can be effectively expanded, without adding and modifying the hardware therein, thereby increasing the monitoring function to the radioactive matter carried by the human body and further improving the effects of the human body security inspection.
Abstract:
Human body back-scattering inspection systems and methods are disclosed. In the invention, X-rays modulated by the flying-spot forming unit having spirally distributed flying-spots have a distribution having alternating peaks and valleys on the irradiated surface. In this way, scanning starting times can be precisely controlled to cause two devices to have scanning starting times that are different by a half of a cycle. That is, the beams outputted from one device are at maximum when the beams outputted from the other device are at minimum. In other words, even if the ray source of one device emits rays, it will not significantly affect imaging result of the other device. In such way, the two devices may emit rays and perform scanning at the same time, and thus the total scanning time is reduced.
Abstract:
The present disclosure provides a mobile back scattering imaging security inspection apparatus, comprising: a back scattering scanner (2), a detector (3), a controller (4), and a movable stage (1) configured to carry the back scattering scanner, the detector and the controller and being movable with respect to the object to be inspected; wherein the back scattering scanner is a distributed X-ray source comprising a plurality of target points (201), each of which is able to emit the ray beam individually, and wherein the back scattering scanner, the detector and the controller perform an imaging security inspection operation on the object to be inspected during moving along with the movable stage with respect to the object.
Abstract:
A ray emission device and an imaging system with the ray emission device are disclosed. The ray emission device comprises: a cylinder; a ray source disposed in the cylinder for emitting a ray; and a collimator disposed in the cylinder. The collimator enables the ray emitted by the ray source to form sectorial ray beams at a plurality of positions in an axial direction of the cylinder. The cylinder has a pencil beam forming part arranged over an axial length of the cylinder corresponding to the plurality of positions. The sectorial ray beams form pencil beams through the pencil beam forming part when the cylinder rotates around a rotation axis.
Abstract:
The present disclosure relates to a portable backscatter imaging inspection apparatus and an imaging method thereof, the apparatus comprising: an apparatus housing, an X-ray source, a rotating modulation mechanism, a radiation detector, a motion sensor and a controller; the X-ray source, the rotating modulation mechanism, the radiation detector and the motion sensor are disposed within the apparatus housing, wherein the radiation detector is used to receive scatter signal data from a surface of an object under inspection to form a two dimensional (2D) image, the motion sensor is used to collect a three dimensional (3D) motion track and scanning angles of the apparatus during a scanning process, the controller is used to splice and fuse a plurality of 2D images received by the radiation detector based on the 3D motion track and the scanning angles to obtain a stereo image of the surface of the object under inspection. This disclosure may achieve a better scan imaging effect on an object having a curved surface or multiple irregular surfaces.
Abstract:
The present invention provides a human body security inspection method and system. The method comprises: retrieving in real-time scanning row or column image data of a personal to be inspected; transmitting in real-time the image data to an algorithm processing module and processing these image data by the module; automatically recognizing a suspicious matter by a suspicious matter automatic target recognition technique, after retrieving an image data of an entire scanning image of the personal; any of the following three inspection modes is selected, so as to perform a further processing on basis of the recognition result of the suspicious matter, (1) in a manner of automatic target recognition technique, (2) in a combination manner of the automatic target recognition technique and a privacy protection image; and (3) a combination manner of the automatic target recognition technique, a privacy protection image and human intervention.
Abstract:
The invention presents a backscattering scintillation detector. The scintillation detector includes a scintillation crystal detector; a X-ray sensitizing screen, which is disposed forward the scintillation crystal detector and where a backscattered X-ray from an object to be detected is processed and then at least part of the processed X-ray is incident to scintillation crystal detector; and photoelectric multiplier, which is disposed backward the scintillation crystal detector and is configured to collect a light signal from scintillation crystal detector and convert it to an electrical signal. Through the above preferable embodiment, a X-ray sensitizing screen, a scintillation crystal detector, and light guiding and wave-drifting technologies are combined together to obtain a novel scintillation detector, which can improve detection of X-ray, transmission of light signal and conversion of light signal to electrical signal.