Abstract:
A raman spectroscopy method of measuring melamine contents in dairy products having different matrixes. The method includes: (a) establishing a database of characteristic curves of dairy products having different matrixes; (b) taking several copies of the dairy products having one certain unknown matrix and adding melamine standard solutions having different concentrations therein, to obtain a series of dairy product samples in which the relative concentrations of the melamine are known; (c) performing raman spectrum testing analysis and obtaining corresponding characteristic peak intensities to obtain a slope of the characteristic curve showing variation of the characteristic peak intensities with the relative concentrations of the melamine; (d) searching the database of step (a) using the slope of the characteristic curve of the dairy product samples to find a matching characteristic curve, and (e) calculating concentration of melamine in the dairy products by using the matched characteristic curve and the characteristic peak intensity.
Abstract:
The present disclosure relates to a method and device for estimating a point spread function. In one implementation, a method includes capturing, by a scanning device, an image by scanning a plurality of rectangle blocks which are same sized and closely arranged, wherein the plurality of rectangle blocks are made of different materials and/or have different mass thicknesses, and an incident direction of rays is perpendicular to a scanning direction and a surface of the plurality of rectangle blocks arranged closely during scanning; obtaining line spread functions for two directions along a length side and a width side of each of the rectangle blocks based on the scanned image, and obtaining standard deviation parameters of the line spread functions; and combining the standard deviation parameters for the two directions to obtain a two dimensional Point Spread Function (PSF) parameter so as to estimate the point spread function.
Abstract:
A method of evaluating an image quality for an imaging system and the imaging system are provided. The method may comprise: acquiring an image to be evaluated which is generated by the imaging system; extracting a plurality of sub-images from the image; obtaining a coefficient vector indicating a degree of sparsity by applying a sparse decomposition on the plurality of sub-images based on a pre-set redundant sparse representation dictionary; and performing a linear transformation on the coefficient vector so as to obtain an evaluation value for the image quality. The sparse dictionary is learned by only using a few high quality perspective images, and then the image quality is evaluated based on the sparse degree of the image which is obtained by using the sparse dictionary, thereby achieving a convenient and rapid no-reference image quality evaluation.
Abstract:
Embodiments of the present invention provide a Raman spectroscopic inspection method, comprising the steps of: measuring a Raman spectrum of an object to be inspected successively to collect a plurality of Raman spectroscopic signals; superposing the plurality of Raman spectroscopic signals to form a superposition signal; filtering out a florescence interfering signal from the superposition signal; and identifying the object to be inspected on basis of the superposition signal from which the florescence interfering signal has been filtered out. By means of the above method, a desired Raman spectroscopic signal may be acquired by removing the interference caused by a florescence signal from a Raman spectroscopic inspection signal of the object. It may inspect correctly the characteristics of the Raman spectrum of the object so as to identify the object effectively.