-
公开(公告)号:US12235353B2
公开(公告)日:2025-02-25
申请号:US17454389
申请日:2021-11-10
Applicant: NVIDIA Corporation
Inventor: Gang Pan , Joachim Pehserl , Dong Zhang , Baris Evrim Demiroz , Samuel Rupp Ogden , Tae Eun Choe , Sangmin Oh
IPC: G01S13/931 , G01S13/86 , G01S17/86 , G01S17/931
Abstract: In various examples, a hazard detection system fuses outputs from multiple sensors over time to determine a probability that a stationary object or hazard exists at a location. The system may then use sensor data to calculate a detection bounding shape for detected objects and, using the bounding shape, may generate a set of particles, each including a confidence value that an object exists at a corresponding location. The system may then capture additional sensor data by one or more sensors of the ego-machine that are different from those used to capture the first sensor data. To improve the accuracy of the confidences of the particles, the system may determine a correspondence between the first sensor data and the additional sensor data (e.g., depth sensor data), which may be used to filter out a portion of the particles and improve the depth predictions corresponding to the object.
-
公开(公告)号:US20240410981A1
公开(公告)日:2024-12-12
申请号:US18810728
申请日:2024-08-21
Applicant: NVIDIA CORPORATION
Inventor: Nikolai Smolyanskiy , Ryan Oldja , Ke Chen , Alexander Popov , Joachim Pehserl , Ibrahim Eden , Tilman Wekel , David Wehr , Ruchi Bhargava , David Nister
IPC: G01S7/48 , B60W60/00 , G01S17/89 , G01S17/931 , G05D1/81 , G06N3/045 , G06T19/00 , G06V10/10 , G06V10/25 , G06V10/26 , G06V10/44 , G06V10/764 , G06V10/774 , G06V10/80 , G06V10/82 , G06V20/56 , G06V20/58
Abstract: A deep neural network(s) (DNN) may be used to detect objects from sensor data of a three dimensional (3D) environment. For example, a multi-view perception DNN may include multiple constituent DNNs or stages chained together that sequentially process different views of the 3D environment. An example DNN may include a first stage that performs class segmentation in a first view (e.g., perspective view) and a second stage that performs class segmentation and/or regresses instance geometry in a second view (e.g., top-down). The DNN outputs may be processed to generate 2D and/or 3D bounding boxes and class labels for detected objects in the 3D environment. As such, the techniques described herein may be used to detect and classify animate objects and/or parts of an environment, and these detections and classifications may be provided to an autonomous vehicle drive stack to enable safe planning and control of the autonomous vehicle.
-
3.
公开(公告)号:US20240111025A1
公开(公告)日:2024-04-04
申请号:US18531103
申请日:2023-12-06
Applicant: NVIDIA Corporation
Inventor: Tilman Wekel , Sangmin Oh , David Nister , Joachim Pehserl , Neda Cvijetic , Ibrahim Eden
IPC: G01S7/48 , G01S7/481 , G01S17/894 , G01S17/931 , G06V10/764 , G06V10/80 , G06V10/82 , G06V20/58
CPC classification number: G01S7/4802 , G01S7/481 , G01S17/894 , G01S17/931 , G06V10/764 , G06V10/80 , G06V10/82 , G06V20/58 , G01S7/28
Abstract: In various examples, a deep neural network (DNN) may be used to detect and classify animate objects and/or parts of an environment. The DNN may be trained using camera-to-LiDAR cross injection to generate reliable ground truth data for LiDAR range images. For example, annotations generated in the image domain may be propagated to the LiDAR domain to increase the accuracy of the ground truth data in the LiDAR domain—e.g., without requiring manual annotation in the LiDAR domain. Once trained, the DNN may output instance segmentation masks, class segmentation masks, and/or bounding shape proposals corresponding to two-dimensional (2D) LiDAR range images, and the outputs may be fused together to project the outputs into three-dimensional (3D) LiDAR point clouds. This 2D and/or 3D information output by the DNN may be provided to an autonomous vehicle drive stack to enable safe planning and control of the autonomous vehicle.
-
公开(公告)号:US20210156963A1
公开(公告)日:2021-05-27
申请号:US16836618
申请日:2020-03-31
Applicant: NVIDIA Corporation
Inventor: Alexander Popov , Nikolai Smolyanskiy , Ryan Oldja , Shane Murray , Tilman Wekel , David Nister , Joachim Pehserl , Ruchi Bhargava , Sangmin Oh
Abstract: In various examples, a deep neural network(s) (e.g., a convolutional neural network) may be trained to detect moving and stationary obstacles from RADAR data of a three dimensional (3D) space. In some embodiments, ground truth training data for the neural network(s) may be generated from LIDAR data. More specifically, a scene may be observed with RADAR and LIDAR sensors to collect RADAR data and LIDAR data for a particular time slice. The RADAR data may be used for input training data, and the LIDAR data associated with the same or closest time slice as the RADAR data may be annotated with ground truth labels identifying objects to be detected. The LIDAR labels may be propagated to the RADAR data, and LIDAR labels containing less than some threshold number of RADAR detections may be omitted. The (remaining) LIDAR labels may be used to generate ground truth data.
-
公开(公告)号:US20210150230A1
公开(公告)日:2021-05-20
申请号:US16915346
申请日:2020-06-29
Applicant: NVIDIA Corporation
Inventor: Nikolai Smolyanskiy , Ryan Oldja , Ke Chen , Alexander Popov , Joachim Pehserl , Ibrahim Eden , Tilman Wekel , David Wehr , Ruchi Bhargava , David Nister
Abstract: A deep neural network(s) (DNN) may be used to detect objects from sensor data of a three dimensional (3D) environment. For example, a multi-view perception DNN may include multiple constituent DNNs or stages chained together that sequentially process different views of the 3D environment. An example DNN may include a first stage that performs class segmentation in a first view (e.g., perspective view) and a second stage that performs class segmentation and/or regresses instance geometry in a second view (e.g., top-down). The DNN outputs may be processed to generate 2D and/or 3D bounding boxes and class labels for detected objects in the 3D environment. As such, the techniques described herein may be used to detect and classify animate objects and/or parts of an environment, and these detections and classifications may be provided to an autonomous vehicle drive stack to enable safe planning and control of the autonomous vehicle.
-
公开(公告)号:US20240265712A1
公开(公告)日:2024-08-08
申请号:US18599719
申请日:2024-03-08
Applicant: NVIDIA Corporation
Inventor: David Wehr , Ibrahim Eden , Joachim Pehserl
CPC classification number: G06V20/58 , G01B11/22 , G01S17/89 , G05D1/249 , G06N7/01 , G06T7/579 , G06T7/70 , G06T2207/10028 , G06T2207/20081 , G06T2207/30261
Abstract: In various examples, systems and methods are described that generate scene flow in 3D space through simplifying the 3D LiDAR data to “2.5D” optical flow space (e.g., x, y, and depth flow). For example, LiDAR range images may be used to generate 2.5D representations of depth flow information between frames of LiDAR data, and two or more range images may be compared to generate depth flow information, and messages may be passed—e.g., using a belief propagation algorithm—to update pixel values in the 2.5D representation. The resulting images may then be used to generate 2.5D motion vectors, and the 2.5D motion vectors may be converted back to 3D space to generate a 3D scene flow representation of an environment around an autonomous machine.
-
公开(公告)号:US20240029447A1
公开(公告)日:2024-01-25
申请号:US18482183
申请日:2023-10-06
Applicant: NVIDIA Corporation
Inventor: Nikolai SMOLYANSKIY , Ryan Oldja , Ke Chen , Alexander Popov , Joachim Pehserl , Ibrahim Eden , Tilman Wekel , David Wehr , Ruchi Bhargava , David Nister
CPC classification number: G06V20/584 , G01S17/931 , B60W60/0016 , B60W60/0027 , B60W60/0011 , G01S17/89 , G05D1/0088 , G06T19/006 , G06V20/58 , G06N3/045 , B60W2420/403 , G06T2207/10028 , G06T2207/20081 , G06T2207/20084 , G06T2207/30261
Abstract: A deep neural network(s) (DNN) may be used to detect objects from sensor data of a three dimensional (3D) environment. For example, a multi-view perception DNN may include multiple constituent DNNs or stages chained together that sequentially process different views of the 3D environment. An example DNN may include a first stage that performs class segmentation in a first view (e.g., perspective view) and a second stage that performs class segmentation and/or regresses instance geometry in a second view (e.g., top-down). The DNN outputs may be processed to generate 2D and/or 3D bounding boxes and class labels for detected objects in the 3D environment. As such, the techniques described herein may be used to detect and classify animate objects and/or parts of an environment, and these detections and classifications may be provided to an autonomous vehicle drive stack to enable safe planning and control of the autonomous vehicle.
-
8.
公开(公告)号:US20230260136A1
公开(公告)日:2023-08-17
申请号:US17672402
申请日:2022-02-15
Applicant: NVIDIA Corporation
CPC classification number: G06T7/254 , G06V10/454 , G06T2207/10028 , G06T2207/20084 , G06V2201/07
Abstract: In various examples, systems and methods of the present disclosure detect and/or track objects in an environment using projection images generated from LiDAR. For example, a machine learning model—such as a deep neural network (DNN)—may be used to compute a motion mask indicative of motion corresponding to points representing objects in an environment. Various input channels may be provided as input to the machine learning model to compute a motion mask. One or more comparison images may be generated based on comparing depth values projected from a current range image to a coordinate space of a previous range image to depth values of the previous range image. The machine learning model may use the one or more projection images, the one or more comparison images, and/or the one or more range images to compute a motion mask and/or a motion vector output representation.
-
公开(公告)号:US20230142299A1
公开(公告)日:2023-05-11
申请号:US17454389
申请日:2021-11-10
Applicant: NVIDIA Corporation
Inventor: Gang Pan , Joachim Pehserl , Dong Zhang , Baris Evrim Demiroz , Samuel Rupp Ogden , Tae Eun Choe , Sangmin Oh
IPC: G01S13/931 , G01S13/86 , G01S17/931 , G01S17/86
CPC classification number: G01S13/931 , G01S13/865 , G01S17/931 , G01S17/86 , G01S13/867 , G01S2013/932 , G01S2013/9318
Abstract: In various examples, a hazard detection system fuses outputs from multiple sensors over time to determine a probability that a stationary object or hazard exists at a location. The system may then use sensor data to calculate a detection bounding shape for detected objects and, using the bounding shape, may generate a set of particles, each including a confidence value that an object exists at a corresponding location. The system may then capture additional sensor data by one or more sensors of the ego-machine that are different from those used to capture the first sensor data. To improve the accuracy of the confidences of the particles, the system may determine a correspondence between the first sensor data and the additional sensor data (e.g., depth sensor data), which may be used to filter out a portion of the particles and improve the depth predictions corresponding to the object.
-
公开(公告)号:US11532168B2
公开(公告)日:2022-12-20
申请号:US16915346
申请日:2020-06-29
Applicant: NVIDIA Corporation
Inventor: Nikolai Smolyanskiy , Ryan Oldja , Ke Chen , Alexander Popov , Joachim Pehserl , Ibrahim Eden , Tilman Wekel , David Wehr , Ruchi Bhargava , David Nister
Abstract: A deep neural network(s) (DNN) may be used to detect objects from sensor data of a three dimensional (3D) environment. For example, a multi-view perception DNN may include multiple constituent DNNs or stages chained together that sequentially process different views of the 3D environment. An example DNN may include a first stage that performs class segmentation in a first view (e.g., perspective view) and a second stage that performs class segmentation and/or regresses instance geometry in a second view (e.g., top-down). The DNN outputs may be processed to generate 2D and/or 3D bounding boxes and class labels for detected objects in the 3D environment. As such, the techniques described herein may be used to detect and classify animate objects and/or parts of an environment, and these detections and classifications may be provided to an autonomous vehicle drive stack to enable safe planning and control of the autonomous vehicle.
-
-
-
-
-
-
-
-
-