Abstract:
Various embodiments relate to a system for provisioning a cryptographic device, including: a memory; a processor coupled to the memory, wherein the processor is further configured to: determine a maximum PQC private key size, maximum PQC public key size, and maximum PQC updater size of a plurality of post quantum cryptography algorithms; provision memory in the cryptographic device to store a PQC-update non-PQC private key, a secret PQC-update non-PQC public key, PQC private key, PQC public key, and PQC updater based upon the determined maximum PQC private key size, maximum PQC public key size, and maximum updater size; and provision the cryptographic device with the PQC-update non-PQC private key, the secret PQC-update non-PQC public key, a non-PQC secret key, a non-PQC public key, and non-PQC algorithm code configured to carry out non-PQC cryptographic algorithms.
Abstract:
Various embodiments relate to a system for provisioning a cryptographic device, including: a memory; a processor coupled to the memory, wherein the processor is further configured to: determine the maximum key generation seed size, maximum PQC private key size, maximum PQC public key size, and maximum PQC updater size of a plurality of post quantum cryptography algorithms; provision memory in the cryptographic device to store a key generation seed, PQC private key, PQC public key, and PQC updater based upon the determined maximum key generation seed size, maximum PQC private key size, maximum PQC public key size, and maximum PQC updater size; and provision the cryptographic device with a non-PQC secret key, a non-PQC public key, and non-PQC algorithm code configured to carry out non-PQC cryptographic algorithms.
Abstract:
A system and method for obtaining an authorization key to use a product utilizes a secured product identification code, which includes a serial number and at least one code that is generated based on a cryptographic algorithm.
Abstract:
An apparatus for storing or reading data in a memory array of a transponder and a corresponding transponder, read/write device and program element is described. Therein, a data file system for storing data within the memory array is defined by a predetermined protocol. The storing additional data includes checking whether a memory size of the application data file is larger than the memory size indicated by the application data length indicator; and storing second application data in a partial memory area of the application data file not occupied by the first application data. Thereby, memory areas which, according to the predetermined protocol, are not used can be used for new applications, data can be hidden in these areas such that they can not be read by protocol compliant reader devices and the data structure read or written is compatible with the former predetermined protocol.
Abstract:
A method for storing or reading data in a memory array of a transponder and a corresponding transponder, read/write device and program element is described. Therein, a data file system for storing data within the memory array is defined by a predetermined protocol. The method for storing additional data includes checking whether a memory size of the application data file is larger than the memory size indicated by the application data length indicator; and storing second application data in a partial memory area of the application data file not occupied by the first application data. Thereby, memory areas which, according to the predetermined protocol, are not used can be used for new applications, data can be hidden in these areas such that they can not be read by protocol compliant reader devices and the data structure read or written by the method of the invention is compatible with the former predetermined protocol.
Abstract:
It is described a method for accessing a secure storage of a mobile device, the method comprising: providing a generic interface for accessing the secure storage; accessing the secure storage using the generic interface by a first application of the mobile device; accessing the secure storage using the generic interface by a second application of the mobile device. Further, a corresponding secure electronic storage and a system is described.
Abstract:
A method for storing or reading data in a memory array of a transponder and a corresponding transponder, read/write device and program element is described. Therein, a data structure for storing data within the memory array is defined by a predetermined protocol. The data structure comprises: a header data block including predefined header data; an application data block for storing application data; a memory control data block including a reservation indicator for indicating a reserved partial memory area of the memory array where, in accordance with the predetermined protocol, application data cannot be read or written by a protocol compliant reader device. The method for storing data comprises storing additional application data in the reserved partial memory area. Thereby, memory areas which, according to the predetermined protocol, are not used can be used for new applications, data can be hidden in these areas such that they cannot be read by protocol compliant reader devices and the data structure read or written by the method of the invention is compatible with the former predetermined protocol.
Abstract:
According to an aspect of the invention, an electronic lock is conceived, being adapted to harvest energy from a radio frequency (RF) connection established between a mobile device and said electronic lock, further being adapted to use the harvested energy for processing an authorization token received via said RF connection from the mobile device, and further being adapted to use the harvested energy for controlling an unlocking switch in dependence on a result of said processing.
Abstract:
A system and method for obtaining an authorization key to use a product utilizes a secured product identification code, which includes a serial number and at least one code that is generated based on a cryptographic algorithm.
Abstract:
A method for storing or reading data in a memory array of a transponder and a corresponding transponder, read/write device and program element is described. Therein, a data structure for storing data within the memory array is defined by a predetermined protocol. The data structure comprises: a header data block including predefined header data; an application data block for storing application data; a memory control data block including a reservation indicator for indicating a reserved partial memory area of the memory array where, in accordance with the predetermined protocol, application data cannot be read or written by a protocol compliant reader device. The method for storing data comprises storing additional application data in the reserved partial memory area. Thereby, memory areas which, according to the predetermined protocol, are not used can be used for new applications, data can be hidden in these areas such that they cannot be read by protocol compliant reader devices and the data structure read or written by the method of the invention is compatible with the former predetermined protocol.