Abstract:
An electronic counter comprising a sequence of memory cells, each memory cell being non-volatile and supporting a one state and a zero state, the counter being configured to represent at least part of a current counting-state of the counter as a pattern of one and zero states in the memory cells of the sequence of memory cells, and increment logic configured to advance the pattern of one and zero states to a next pattern to represent an increment of the counter, the increment logic comprising programming increment logic and erasing increment logic, the increment logic being configured to alternate between a programming phase in which the programming increment logic advances the pattern, and an erasing phase in which the erasing increment logic advances the pattern, wherein the programming increment logic is configured to program a next cell of the sequence of non-volatile memory cells from a zero state to a one state, the program phase terminating when all memory cells of the sequence of memory cells are in the one state, the erasing increment logic is configured to erase a next cell of the sequence of non-volatile memory cells from a one state to a zero state, the erase phase terminating when all memory cells of the sequence of memory cells are in the zero state.
Abstract:
In accordance with a first aspect of the present disclosure, a radio frequency identification (RFID) device is provided, comprising a first power domain, a second power domain, a first processing unit, and a second processing unit, wherein the first processing unit is configured to execute one or more first operations and the second processing unit is configured to execute one or more second operations, wherein the first operations output intermediate data which are used as input for the second operations, and wherein the first processing unit is configured to operate in the first power domain and the second processing unit is configured to operate in the second power domain, said first power domain having a larger amount of available power than the second power domain. In accordance with further aspects of the present disclosure, a corresponding method of operating a radio frequency identification (RFID) device is conceived, and a corresponding computer program is provided.
Abstract:
Methods of securing a cryptographic device against implementation attacks, are described. A disclosed method comprises the steps of obtaining a key (230) from memory of the cryptographic device; providing the key and a constant input (210) to an encryption module (240); deriving an output (250) of encrypted data bits using the encryption module (240); providing the output (250), the key (230) and an input vector (270) to a key update module (260); and using said key update module (260) to modify the key based on at least a part (270a) of the input vector (270) to derive an updated key (230a). This prevents the value of the key from being derived using the updated key or by using side-channel attacks because the input is constant for all keys. Additionally, by altering the input vector, the updated key is also altered.
Abstract:
Methods of securing a cryptographic device against implementation attacks, are described. A disclosed method comprises the steps of obtaining a key (230) from memory of the cryptographic device; providing the key and a constant input (210) to an encryption module (240); deriving an output (250) of encrypted data bits using the encryption module (240); providing the output (250), the key (230) and an input vector (270) to a key update module (260); and using said key update module (260) to modify the key based on at least a part (270a) of the input vector (270) to derive an updated key (230a). This prevents the value of the key from being derived using the updated key or by using side-channel attacks because the input is constant for all keys. Additionally, by altering the input vector, the updated key is also altered.
Abstract:
Methods of securing a cryptographic device against implementation attacks are described. A disclosed method comprises the steps of: generating secret values (324) using a pseudorandom generator (510); providing a key (330), an input (324) having a number of chunks and the secret values to an encryption module (340); indexing the chunks and the secret values (324); processing the input chunk wise by encrypting the secret values (324) indexed by the chunks using the key (330) and the encryption module (340); generating for each chunk a pseudorandom output (330′) of the encryption module (340), providing the pseudorandom output as the key (330′) when processing the next chunk; and performing a final transformation on the last pseudorandom output (330′) from the previous step by using it as a key to encrypt a fixed plaintext.
Abstract:
Methods of securing a cryptographic device against implementation attacks are described. A disclosed method comprises the steps of: generating secret values (324) using a pseudorandom generator (510); providing a key (330), an input (324) having a number of chunks and the secret values to an encryption module (340); indexing the chunks and the secret values (324); processing the input chunk wise by encrypting the secret values (324) indexed by the chunks using the key (330) and the encryption module (340); generating for each chunk a pseudorandom output (330′) of the encryption module (340), providing the pseudorandom output as the key (330′) when processing the next chunk; and performing a final transformation on the last pseudorandom output (330′) from the previous step by using it as a key to encrypt a fixed plaintext.
Abstract:
An electronic counter is provided having a sequence of memory cells and increment logic. Each memory cell of the sequence is non-volatile and supports a one state and a zero state. The one state can also be referred to as a ‘programmed state’, the zero state as an ‘erased state’. The counter is configured to represent at least part of a current counting-state of the counter as a pattern of one and zero states in the memory cells of the sequence of memory cells, and increment logic configured to advance the pattern of one and zero states to a next pattern to represent an increment of the counter.