摘要:
Provided are novel compounds in accordance with Formula I for an organic electronic material and an organic electroluminescent device using same. The compound for an organic electronic material disclosed herein exhibits high electron transport efficiency and thus prevents crystallization upon manufacturing a device, and also facilitates the formation of a layer, thus improving current properties of the device. Thereby, OLED devices having improved power efficiency as well as reduced operating voltage can be manufactured.
摘要:
The present invention relates to a porous electrode used in a polymer electrolyte membrane fuel cell, and more particularly to a method of preparing a membrane-electrode assembly by forming a self-stand electrode layer by coating catalyst ink on a non-conductive substrate having a macropore and then joining it to a polymer electrolyte membrane. The porous self-stand electrode according to the present invention allows moisture and gas to be smoothly discharged and inflowed in a high current density operation region to improve the performance of a fuel cell, and can be freely cutted to simplify the preparation process of the membrane-electrode assembly.
摘要:
The present invention discloses a process for preparing catalyst solution for a membrane-electrode assembly in a fuel cell, which comprises the steps of a) mixing a catalyst solution (Solution A) wherein catalyst particles are dispersed in water and an ion conductive resin solution (Solution B) wherein an ion conductive resin is dissolved in water, low boiling point organic solvent or a mixture thereof, to form a dispersion; b) mixing the dispersion obtained from step a) with functional additive dissolved in high boiling point solvent or a mixture of low boiling point solvent arid water (Solution C) to prepare catalyst ink dispersion; and c) aging the catalyst ink dispersion obtained from step b).
摘要:
The present invention discloses a process for preparing catalyst solution for a membrane-electrode assembly in a fuel cell, which comprises the steps of a) mixing a catalyst solution (Solution A) wherein catalyst particles are dispersed in water and an ion conductive resin solution (Solution B) wherein an ion conductive resin is dissolved in water, low boiling point organic solvent or a mixture thereof, to form a dispersion; b) mixing the dispersion obtained from step a) with functional additive dissolved in high boiling point solvent or a mixture of low boiling point solvent arid water (Solution C) to prepare catalyst ink dispersion; and c) aging the catalyst ink dispersion obtained from step b).
摘要:
The present invention relates to a terphenyl dihalide monomer having sulfonate groups and a process for preparing the same. More particularly, the present invention relates to a terphenyl dihalide monomer having sulfonate groups prepared by a process comprising obtaining a terphenyl dihalide derivative by Suzuki cross-coupling of a tetrahalobenzene and phenylboronic acid and introducing sulfonate groups into the phenyl rings at each end of the terphenyl dihalide derivative, the resultant monomer capable of being prepared into a polymer electrolyte having superior ion conductivity through nucleophilic aromatic substitution (SNAr) polymerization due to the presence of two halogen atoms and two conducting sulfonate groups in the monomer molecule, and a process for preparing the same.
摘要翻译:本发明涉及具有磺酸盐基团的三联苯二卤化物单体及其制备方法。 更具体地,本发明涉及具有磺酸盐基团的三联苯二卤化物单体,其通过以下方法制备,所述方法包括通过四卤代苯和苯硼酸的Suzuki交叉偶联获得三联苯二卤化物衍生物,并且在三联苯的每个末端将引入磺酸基团引入苯环 二卤化物衍生物,所得单体能够通过亲核芳香取代(S N N Ar)聚合制备成具有优异离子传导性的聚合物电解质,由于两个卤素原子和两个导电磺酸基团的存在, 单体分子及其制备方法。