Abstract:
A high pressure discharge lamp system and a method for operating a high pressure discharge lamp are provided. The method includes rotating the discharge lamp around its longitudinal axis. The discharge lamp or a lamp assembly including the discharge lamp and a reflector may be rotated through specified angles at specified times or intervals, or upon the occurrence of specified events. The discharge lamp may be rotated when the lamp is deenergized or when the lamp is energized. The discharge lamp may be rotated by a predetermined angle before operation, after operation, or after a predetermined burn time. The lamp system includes a rotation mechanism coupled to the lamp assembly and configured to rotate the discharge lamp about its longitudinal axis.
Abstract:
An arc discharge metal halide lamp having a discharge chamber with visible light permeable walls bounding a discharge region through which walls a pair of electrode assemblies are supported with interior ends thereof positioned in the discharge region spaced apart from one another. These electrode assemblies each also extend through a corresponding capillary tube affixed to the walls to have exterior ends thereof positioned outside the arc discharge chamber. At least one of these electrode assemblies comprises an electrode discharge structure with a discharge region shaft extending into the capillary tube corresponding thereto. A discharge region shaft extends outwardly in that corresponding capillary tube to be in direct contact with an interconnection shaft extending outside of that corresponding capillary tube to provide an exterior end of this electrode assembly, and which is in direct contact with a sealing cap over the end of the tube.
Abstract:
Methods and apparatus are provided for operating very high pressure short arc mercury discharge lamps primarily used for projection applications. The method includes controlling an alternating lamp current supplied to the lamp at a constant RMS value. In some embodiments, the lamp current is adjusted to a new constant RMS value to maintain lamp power between an upper power limit and a lower power limit. In other embodiments, lamp cooling is adjusted to maintain a wall temperature of the arc tube below a softening temperature.
Abstract:
A lamp ballast for operating a high intensity discharge lamp includes an electronic ballast circuit to supply an operating voltage to the discharge lamp, and an igniter circuit to supply starting pulses to the discharge lamp in a cold state and to supply hot restrike pulses to the discharge lamp when the discharge lamp is in a hot state following turn-off. The hot restrike pulses are sufficient to maintain ionization in the discharge lamp but do not cause the discharge lamp to generate substantial light output.
Abstract:
An arc discharge metal halide lamp having a discharge chamber having visible light permeable walls bounding a discharge region supported electrodes in a discharge region spaced apart by a distance Le with an average interior diameter equal to D so they have a selected ratio. Ionizable materials are provided in this chamber involving a noble gas, one or more halides, and mercury in an amount sufficiently small so as to result in a relatively low maximum voltage drop between the electrodes during lamp operation.
Abstract:
Methods and apparatus are provided for operating very high pressure short arc mercury discharge lamps primarily used for projection applications. The method includes controlling an alternating lamp current supplied to the lamp at a constant RMS value. In some embodiments, the lamp current is adjusted to a new constant RMS value to maintain lamp power between an upper power limit and a lower power limit. In other embodiments, lamp cooling is adjusted to maintain a wall temperature of the arc tube below a softening temperature.
Abstract:
A lamp ballast for operating a high intensity discharge lamp includes an electronic ballast circuit to supply an operating voltage to the discharge lamp, and an igniter circuit to supply starting pulses to the discharge lamp in a cold state and to supply hot restrike pulses to the discharge lamp when the discharge lamp is in a hot state following turn-off. The hot restrike pulses are sufficient to maintain ionization in the discharge lamp but do not cause the discharge lamp to generate substantial light output.
Abstract:
An arc discharge metal halide lamp for use in selected lighting fixtures comprising a discharge chamber having light permeable walls of a selected shape including therein a pair of end region wall portions through each of which a corresponding one of a pair of electrodes are supported separated from one another by a separation length. The ratio of the separation length to the effective operation inner diameter of the chamber is greater than two. The lengths of the wall sides between the end wall portions is greater than the effective operation inner diameter. The end wall portions have inner surfaces of constant or smaller varying radii of curvature and they are separated from the interior ends of the electrodes by more than one millimeter. The discharge chamber can be constructed of polycrystalline alumina and contain metal halides.
Abstract:
An arc discharge metal halide lamp having a discharge chamber with visible light permeable walls bounding a discharge region through which walls a pair of electrode assemblies are supported with interior ends thereof positioned in the discharge region spaced apart from one another. These electrode assemblies each also extend through a corresponding capillary tube affixed to the walls to have exterior ends thereof positioned outside the arc discharge chamber. At least one of these electrode assemblies comprises an electrode discharge structure with a discharge region shaft extending into the capillary tube corresponding thereto. A discharge region shaft extends outwardly in that corresponding capillary tube to be in direct contact with an interconnection shaft extending outside of that corresponding capillary tube to provide an exterior end of this electrode assembly, and which is in direct contact with a sealing cap over the end of the tube.
Abstract:
An arc discharge metal halide lamp having a discharge chamber having visible light permeable walls bounding a discharge region supported electrodes in a discharge region spaced apart by a distance Le with an average interior diameter equal to D so they have a selected ratio. Ionizable materials are provided in this chamber involving a noble gas, one or more halides, and mercury in an amount sufficiently small so as to result in a relatively low maximum voltage drop between the electrodes during lamp operation.