摘要:
An operating device (40) for a state-changing element that is an embodiment of the present invention includes a detent mechanism (50) for displacing and positioning displacement members (22, 33) included in a state-changing element (10), an actuator (60) for driving the detent mechanism (50), and a control unit (5) that controls the actuator (60). The control unit (5) includes an initial motion means (S1) that, in a case of receiving a request to change the state of the state-changing element (10) and changing the position of a detent member (51), drives an electric motor (61) and reduces play in the rotation direction that exists in the actuator (60), and a management means (S2 to S5) that, when it has been determined that the play has been reduced, sets a value obtained by tacking on play in the rotation direction that exists in a coupling portion between a spindle (52) and an output shaft (63) to a rotation angle necessary for a position change of the detent member (51) corresponding to the request, as a target rotation angle of the electric motor (61).
摘要:
A hydraulic control device for a multi-speed automatic transmission includes friction engagement elements, several hydraulic servos that engage and release the friction engagement elements, solenoid valves for engagement control, and a sorting switch valve that allocates engagement pressure from at least one of the solenoid valves for engagement control to two of the hydraulic servos. The sorting switch is switched between a first position that supplies engagement pressure to one of the two hydraulic servos in at least a Reverse, non-drive range and a specific Forward gear range, and a second position that supplies engagement pressure to the two hydraulic servos in other than the Forward range. The hydraulic control device supplies the engagement pressure to the two hydraulic servos when an all-solenoids-off failure occurs and the sorting switch is in the second position, and cuts off a source pressure to all solenoid valves when an all-solenoids-off failure occurs while the sorting switch valve is in the first position.
摘要:
Herein disclosed is a range determination apparatus of a vehicle which can prevent a shift range from being undefined in the speed change states of an automatic transmission with no manual valve. The range determination apparatus comprises a gear speed change mechanism having a plurality of planetary gears each transmitting an output torque of a drive source, and a plurality of friction engagement elements operative to have respective operation states changed between an engagement state and a disengagement state, and used for an automatic transmission realizing speed changes with a torque transmission path of the gear speed change mechanism changed by the operation states of the friction engagement elements, and a real shift range determination being carried out on the basis of the operation states of the friction engagement elements, wherein a T-ECU is operative to determine a current shift range based on the detection results obtained by oil pressure sensors and the operation patterns preliminarily memorized when the operation states of the friction engagement elements are not being changed.
摘要:
An operating device (40) for a state-changing element that is an embodiment of the present invention includes a detent mechanism (50) for displacing and positioning displacement members (22, 33) included in a state-changing element (10), an actuator (60) for driving the detent mechanism (50), and a control unit (5) that controls the actuator (60). The control unit (5) includes an initial motion means (S1) that, in a case of receiving a request to change the state of the state-changing element (10) and changing the position of a detent member (51), drives an electric motor (61) and reduces play in the rotation direction that exists in the actuator (60), and a management means (S2 to S5) that, when it has been determined that the play has been reduced, sets a value obtained by tacking on play in the rotation direction that exists in a coupling portion between a spindle (52) and an output shaft (63) to a rotation angle necessary for a position change of the detent member (51) corresponding to the request, as a target rotation angle of the electric motor (61).
摘要:
A hydraulic control device for a multi-speed automatic transmission includes friction engagement elements, several hydraulic servos that engage and release the friction engagement elements, solenoid valves for engagement control, and a sorting switch valve that allocates engagement pressure from at least one of the solenoid valves for engagement control to two of the hydraulic servos. The sorting switch is switched between a first position that supplies engagement pressure to one of the two hydraulic servos in at least a Reverse, non-drive range and a specific Forward gear range, and a second position that supplies engagement pressure to the two hydraulic servos in other than the Forward range. The hydraulic control device supplies the engagement pressure to the two hydraulic servos when an all-solenoids-off failure occurs and the sorting switch is in the second position, and cuts off a source pressure to all solenoid valves when an all-solenoids-off failure occurs while the sorting switch valve is in the first position.
摘要:
A vehicle shift control device includes: a parking lock device selectively switched by driving of an electric motor between a lock position restraining rotation of wheels and a non-lock position not restraining the rotation of the wheels; and an electronic control device controlling the electric motor, the vehicle shift control device providing a parking lock switching control of selectively switching the parking lock device between the lock position and the non-locking position in an activated state of the electronic control device, wherein if the electronic control device is switched from the deactivated state to the activated state, the vehicle shift control device provides a wall abutment control of driving the parking lock device with the electric motor to a mechanical displacement end before starting the provision of the parking lock switching control, and if a temperature of the electric motor is lower than a predefined low-temperature determination value, the vehicle shift control device provides an electric motor heat generation control of energizing the electric motor without rotating the electric motor after the electronic control device is switched from a deactivated state to an activated state and before starting the provision of the wall abutment control.
摘要:
An actuator for a state changeover element that is actuated in a manner interlocking with the tilting of a tilt member is provided. The actuator is equipped with a rotational power generating portion, an output shaft coaxially and integrally rotatably coupled to a tilt spindle of the tilt member to output a rotational power generated by the rotational power generating portion, a casing that covers the actuator and having an opening for exposing one axial end side of the output shaft to an outside. The actuator is further equipped with a rotational angle limiting unit provided between the output shaft and a wall portion of the casing radially facing the output shaft to physically limit a rotational angle of the output shaft. A range changeover device for an automatic transmission equipped with this actuator and a parking device equipped with this actuator are provided.
摘要:
A shift switching control device of a vehicle including a shift switching mechanism that electrically switches a shift position of an automatic transmission with activation of a step motor based on an operation signal indicative of an operating state of an operating device for switching a shift position of the automatic transmission, wherein if a first shift switching control is provided that is determined in advance as shift position switching control giving higher priority to higher output of the step motor rather than responsiveness of switching of a shift position, the shift switching control device of a vehicle drives the step motor in a one-two-phase excitation mode and sets a rotation speed of the step motor to a predetermined first rotation speed, and wherein if a second shift switching control is provided that is determined in advance as shift position switching control giving higher priority to responsiveness of switching of a shift position rather than higher output of the step motor, the shift switching control device of a vehicle drives the step motor in a one phase excitation mode or a two phase excitation mode and sets a rotation speed of the step motor to a predetermined second rotation speed higher than the first rotation speed.
摘要:
A hydraulic control device for an automatic transmission that includes a fail-safe function to establish a fail-safe traveling state where a predetermined shift speed is established, and a fail-safe stopping state where the primary pressure to all of the hydraulic servos is cut-off when a failure occurs. The hydraulic control device is able to switch between the fail-safe traveling state and the fail-safe stopping state even after a failure occurs, thereby enhancing a limp-mode function.
摘要:
The present invention provides a control apparatus for an automatic transmission which is capable of preventing friction engagement elements from being kept in an engagement state in accordance with the traveling state of a vehicle when a shift lever is operated to the position where an neutral range is formed, even if the malfunction of one or more solenoid valves occurs.In the case where the shift range is switched to an N range (“YES” in the step S11), an ECU controls an So3 solenoid valve to enter an energized state (step S15), and controls a speed change mechanism to enter a non-transmission state, when the ECU judges that vehicle speed V is smaller than an N range forming method changing threshold Vn (“YES” in step S13). On the other hand, the ECU controls an SL1 linear solenoid valve to enter a de-energized state (step S17), and controls the speed change mechanism to enter the non-transmission state, when the ECU judges that the vehicle speed V is no less than the N range forming method changing threshold Vn (“NO” in step S13).