摘要:
Values of multiple tire dynamic element parameters are set for a tire dynamic model constructed using the tire dynamic element parameters for calculating a tire axial force and a self-aligning torque under a given slip ratio. Next, the values of the tire axial force and the self-aligning torque are calculated using the tire dynamic model and output. The tire dynamic model allows a center position of a contact patch thereof against a road surface to move in accordance with a longitudinal force that occurs as the tire axial force when a slip ratio in a braking/driving direction is given so that a position of the contact patch moves in a longitudinal direction due to the longitudinal force. When designing a vehicle or when designing a tire, the tire dynamic model is used.
摘要:
Values of multiple tire dynamic element parameters are set for a tire dynamic model constructed using the tire dynamic element parameters for calculating a tire axial force and a self-aligning torque under a given slip ratio. Next, the values of the tire axial force and the self-aligning torque are calculated using the tire dynamic model and output. The tire dynamic model allows a center position of a contact patch thereof against a road surface to move in accordance with a longitudinal force that occurs as the tire axial force when a slip ratio in a braking/driving direction is given so that a position of the contact patch moves in a longitudinal direction due to the longitudinal force. When designing a vehicle or when designing a tire, the tire dynamic model is used.
摘要:
A transient response of a tire is simulated by using a effective data of a physical amount. The physical amount is set as a rolling condition of the tire and varies in time. The effective data of the physical amount is calculated by a convolution integral of a response function of an introduced first-order lag response and a time gradient of time-series data of the physical amount. In a tire model determining method, a time constant of a response function of the first-order lag response is determined from measured transient response data. In a tire transient response data calculating method, a transient response data is calculated by using the effective data of the physical amount which is calculated by using a desired physical amount and the first-order lag response.
摘要:
The tire transient response data obtained while cornering with a slip angle is calculated based on a tire dynamic model. The deformation response of a tread part in the tire dynamic is set as a first-order-lag response. The value of the transient response parameter is initialized in order to define the first-order-lag response. The time-series data of the transient response of the slip angle between the tread part and the road surface in the tire dynamic model is obtained by computing the convolution integral of the defined response function of the first-order-lag response with a time gradient of the time-series data of the slip angle. The value of a lateral force is calculated by using the tire dynamic model based on the time-series data of the transient response of the slip angle thus obtained. Accordingly, the transient response data is calculated and the value of the transient response parameter is obtained.
摘要:
In a prediction of abrasion characteristic of a tire, a characteristic curve of a tire axis force generated on a tire rotation axis at the slip ratio applied to the tire and changed depending upon the slip ratio is acquired. From the characteristic curve, values of tire dynamic element parameters determining the characteristic curve are derived based on a tire dynamic model constituted by the tire dynamic element parameters. Furthermore, a tire sliding amount based on a sliding region, the sliding region and an adhesive region formed on the contact patch of the tire at the applied slip ratio are calculated by applying the values of the tire dynamic element parameters to the model. Lastly, an abrasion characteristic of a tread part of the tire at the applied slip ratio is predicted by using the tire sliding amount with abrasion characteristic data of a tread rubber of the tread part. According to the prediction results, a tire is designed and produced.
摘要:
A transient response of a tire is simulated by using a effective data of a physical amount. The physical amount is set as a rolling condition of the tire and varies in time. The effective data of the physical amount is calculated by a convolution integral of a response function of an introduced first-order lag response and a time gradient of time-series data of the physical amount. In a tire model determining method, a time constant of a response function of the first-order lag response is determined from measured transient response data. In a tire transient response data calculating method, a transient response data is calculated by using the effective data of the physical amount which is calculated by using a desired physical amount and the first-order lag response.
摘要:
In a prediction of abrasion characteristic of a tire, a characteristic curve of a tire axis force generated on a tire rotation axis at the slip ratio applied to the tire and changed depending upon the slip ratio is acquired. From the characteristic curve, values of tire dynamic element parameters determining the characteristic curve are derived based on a tire dynamic model constituted by the tire dynamic element parameters. Furthermore, a tire sliding amount based on a sliding region, the sliding region and an adhesive region formed on the contact patch of the tire at the applied slip ratio are calculated by applying the values of the tire dynamic element parameters to the model. Lastly, an abrasion characteristic of a tread part of the tire at the applied slip ratio is predicted by using the tire sliding amount with abrasion characteristic data of a tread rubber of the tread part. According to the prediction results, a tire is designed and produced.
摘要:
Tire transient response data during cornering with a slip angle is calculated based on a tire dynamic model. A deformation response of a tread part in the tire dynamic is set as a first-order-lag response. The value of the transient response parameter is initialized, to define the first-order-lag response. The time-series data of the transient response of the slip angle between the tread part and a road surface in the tire dynamic model is obtained by computing a convolution integral of the defined response function of the first-order-lag response with a time gradient of the time-series data of the slip angle. A value of a lateral force is calculated by using the tire dynamic model based on the obtained time-series data of the transient response of the slip angle. Accordingly, the transient response data is calculated, and a value of the transient response parameter is obtained.
摘要:
A method for tire parameter derivation, tire cornering characteristic calculation and tire design is used with a tire dynamic model constituted by using a plurality of tire dynamic element parameters including stiffness and friction coefficient and parameter defining a distribution of contact pressure of the tire. The parameters and tire cornering characteristic are derived by using the combined sum of squared residuals being obtained by weighted addition of a first sum of squared residuals of lateral force and a second sum of squared residuals of self-aligning torque. The tire dynamic model is a model for calculating a lateral force and for calculating a self-aligning torque separately as a lateral force-based torque component generated by the lateral force applied on a contact patch of the tire and a longitudinal force-based torque component generated by a longitudinal force applied on the contact patch of the tire.
摘要:
A method for tire parameter derivation, tire cornering characteristic calculation and tire design is used with a tire dynamic model constituted by using a plurality of tire dynamic element parameters including stiffness and friction coefficient and parameter defining a distribution of contact pressure of the tire. The parameters and tire cornering characteristic are derived by using the combined sum of squared residuals being obtained by weighted addition of a first sum of squared residuals of lateral force and a second sum of squared residuals of self-aligning torque. The tire dynamic model is a model for calculating a lateral force and for calculating a self-aligning torque separately as a lateral force-based torque component generated by the lateral force applied on a contact patch of the tire and a longitudinal force-based torque component generated by a longitudinal force applied on the contact patch of the tire.