Abstract:
A method for processing digital images and displaying them on a television receiver is provided. Initially, an image processing device receives digital image data from a digital camera or other digital device. Next, the digital image is stored on a storage device associated with the image processing device. This digital image on the storage device is converted into television signals and supplied to a television receiver where it can be displayed. Another aspect of the present invention provides an apparatus for processing these images. This apparatus includes a first input terminal capable of receiving digital image data, a second input terminal capable of receiving commands from a user, an output terminal capable of supplying digital image data to a television receiver external to the apparatus, a storage device associated with the apparatus capable of storing the digital image data, and a processor capable of executing instructions in response to commands received over the second input terminal that store the received digital image in the storage device, converts the digital images into television signals, and transmit the television signals to the television receiver for display thereon.
Abstract:
A method for processing digital images and displaying them on a television receiver is provided. Initially, an image processing device receives digital image data from a digital camera or other digital device. Next, the digital image is stored on a storage device associated with the image processing device. This digital image on the storage device is converted into television signals and supplied to a television receiver where it can be displayed. Another aspect of the present invention provides an apparatus for processing these images. This apparatus includes a first input terminal capable of receiving digital image data, a second input terminal capable of receiving commands from a user, an output terminal capable of supplying digital image data to a television receiver external to the apparatus, a storage device associated with the apparatus capable of storing the digital image data, and a processor capable of executing instructions in response to commands received over the second input terminal that store the received digital image in the storage device, converts the digital images into television signals, and transmit the television signals to the television receiver for display thereon.
Abstract:
A method for processing digital images and displaying them on a television receiver is provided. Initially, an image processing device receives digital image data from a digital camera or other digital device. Next, the digital image is stored on a storage device associated with the image processing device. This digital image on the storage device is converted into television signals and supplied to a television receiver where it can be displayed. Another aspect of the present invention provides an apparatus for processing these images. This apparatus includes a first input terminal capable of receiving digital image data, a second input terminal capable of receiving commands from a user, an output terminal capable of supplying digital image data to a television receiver external to the apparatus, a storage device associated with the apparatus capable of storing the digital image data, and a processor capable of executing instructions in response to commands received over the second input terminal that store the received digital image in the storage device, converts the digital images into television signals, and transmit the television signals to the television receiver for display thereon.
Abstract:
A super-resolution image is generated from a sequence of low resolution images. In one embodiment, the image shift information is measured for each of the low resolution images using an image stabilization component of an imaging device. The shift information is used to generate the super-resolution image. In another embodiment, the blurs are calculated for each of the low resolution images and are used to generate the super-resolution image.
Abstract:
A system and method for capturing adjacent images includes an imaging device with a panorama manager that performs various procedures to manipulate one or more image parameters that correspond to adjacent frames of captured image data. An image-stitching software program may then produce a cohesive combined panorama image from the adjacent frames of image data by utilizing the manipulated image parameters.
Abstract:
A system and method for creating composite images by utilizing a camera comprises a cradle device that transports the camera across a target area during a scanning procedure that captures and stores image data. During the scanning procedure, a motion detector captures and provides scan motion data to a scanning manager from the camera. The scanning manager may then responsively utilize the scan motion data to accurately extract still frames corresponding to the target area from the captured image data at pre-determined time intervals. A stitching software program may then access and combine the still frames generated by the scanning manager to thereby create composite images.
Abstract:
A system and method for efficiently performing data transfer operations includes a source device for providing transfer data through a communication path or network to a destination device. The source device has a transfer manager that determines various transfer parameters including a transfer data size, a transfer speed, and a transfer duration. The transfer parameters are then presented on a user interface for interactive use by a system user to manipulate the transfer data with various transfer options to thereby perform the data transfer operation in an optimal manner under current transfer conditions.
Abstract:
A docking station includes a platform, a motion control mechanism, a power source, a mount, a signal interface, and a platform signal routing system. The power source powers the motion control mechanism to move the platform. The mount allows attaching a peripheral device to the platform. The signal interface interfaces the platform with a network. The platform signal routing system routes signals from the signal interface to the motion control mechanism.
Abstract:
A system and method for creating composite images by utilizing a camera comprises a cradle device that transports the camera across a target area during a scanning procedure that captures and stores image data. During the scanning procedure, a motion detector captures and provides scan motion data to a scanning manager from the camera. The scanning manager may then responsively utilize the scan motion data to accurately extract still frames corresponding to the target area from the captured image data at pre-determined time intervals. A stitching software program may then access and combine the still frames generated by the scanning manager to thereby create composite images.
Abstract:
A system and method for efficiently transferring data from an electronic camera device includes a camera device that is configured to capture image data and temporarily store the image data into an economical limited local buffer memory. A transfer manager from the camera device may then periodically arbitrate for access to a wireless communications network, and may transfer the captured image data from the buffer memory to a designated data destination, such as an image service on a distributed computer network like the Internet. A system user may then efficiently access the transferred image data from a dedicated storage location on the data destination by utilizing any appropriate data-access device, such as a personal computer device or a portable electronic device.