Segmented field dielectric sensor array for material characterization
    1.
    发明申请
    Segmented field dielectric sensor array for material characterization 有权
    用于材料表征的分段场介质传感器阵列

    公开(公告)号:US20060247896A1

    公开(公告)日:2006-11-02

    申请号:US11371315

    申请日:2006-03-07

    IPC分类号: G06F15/00

    CPC分类号: G01N22/00

    摘要: The condition of insulating and semiconducting dielectric materials is assessed by a sensor array that uses electric fields to interrogate the test material. The sensor has a linear array of parallel drive conductors interconnected to form a single drive electrode and sense conductors placed on each side of and parallel to a drive conductor. Subsets of the sense conductors are interconnected to form at least two sense elements sensitive to different material regions. The sense conductors may be at different distances to the drive conductors, enabling measurement sensitivity to different depths into the test material. The material condition is assessed directly from the sense element responses or after conversion to an effective material property, such as an electrical conductivity or dielectric permittivity.

    摘要翻译: 绝缘和半导体介电材料的条件通过使用电场询问测试材料的传感器阵列来评估。 传感器具有互连以形成单个驱动电极的线性阵列和放置在驱动导体的平行于驱动导体的每一侧上的感测导体。 感测导体的子集互连以形成对不同材料区域敏感的至少两个感测元件。 感测导体可以距离驱动导体不同的距离,使测量灵敏度不同于测试材料的深度。 材料条件直接由感应元件响应或转换为有效材料性质(如导电率或介电常数)进行评估。

    Fastener and fitting based sensing methods
    2.
    发明申请
    Fastener and fitting based sensing methods 有权
    基于紧固件和拟合的感应方法

    公开(公告)号:US20070007955A1

    公开(公告)日:2007-01-11

    申请号:US11473297

    申请日:2006-06-22

    IPC分类号: G01N27/82

    CPC分类号: G01N27/82

    摘要: Damage and usage conditions in the vicinity of fasteners in joined structures are nondestructively evaluated using the fasteners themselves. Sensors or sensor conductors are embedded in the fasteners or integrated within the fastener construct, either in the clearance gap between the fastener and the structure material or as an insert inside the shaft or pin of the fastener. The response of the material to an interrogating magnetic or electric field is then measured with drive and sense electrodes both incorporated into the fastener or with either drive or sense electrodes external to the fastener on the material surface. In another configuration, an electric current is applied to one or more fasteners and the electric potential is measured at locations typically between the driven electrodes applying the current. The potential is measured circumferentially around the fastener at locations on the material surface or across pairs of fasteners throughout or along the joint. The voltage or potential measurement electrodes may be collinear with the drive electrodes. State sensitive material layers can be added either to the fastener or the test material layers in order to enhance observability of the test material condition, such as the presence of a crack, mechanical stress, delamination, or disbond.

    摘要翻译: 使用紧固件本身对接合结构中紧固件附近的损坏和使用条件进行非破坏性评估。 传感器或传感器导体嵌入到紧固件中或整合在紧固件结构内,无论是在紧固件和结构材料之间的间隙中,或者作为紧固件的轴或销内的插入件。 然后测量材料对询问磁场或电场的响应,其中驱动和感测电极两者并入到紧固件中,或者与材料表面上的紧固件外部的驱动或感测电极结合。 在另一种配置中,电流被施加到一个或多个紧固件,并且在通常在施加电流的驱动电极之间的位置处测量电位。 在整个或沿着接头的材料表面上或穿过成对的紧固件的位置周围围绕紧固件测量电位。 电压或电位测量电极可与驱动电极共线。 可以将状态敏感材料层添加到紧固件或测试材料层中,以便增强测试材料状况的可观察性,例如存在裂纹,机械应力,分层或脱粘。

    Material condition assessment with eddy current sensors
    3.
    发明申请
    Material condition assessment with eddy current sensors 审中-公开
    用涡流传感器进行材料状态评估

    公开(公告)号:US20060244443A1

    公开(公告)日:2006-11-02

    申请号:US11343741

    申请日:2006-01-30

    IPC分类号: G01N27/72

    CPC分类号: G01N27/9046

    摘要: Eddy current sensors and sensor arrays are used for process quality and material condition assessment of conducting materials. In an embodiment, changes in spatially registered high resolution images taken before and after cold work processing reflect the quality of the process, such as intensity and coverage. These images also permit the suppression or removal of local outlier variations. Anisotropy in a material property, such as magnetic permeability or electrical conductivity, can be intentionally introduced and used to assess material condition resulting from an operation, such as a cold work or heat treatment. The anisotropy is determined by sensors that provide directional property measurements. The sensor directionality arises from constructs that use a linear conducting drive segment to impose the magnetic field in a test material. Maintaining the orientation of this drive segment, and associated sense elements, relative to a material edge provides enhanced sensitivity for crack detection at edges.

    摘要翻译: 涡流传感器和传感器阵列用于导电材料的工艺质量和材料状况评估。 在一个实施例中,在冷加工处理之前和之后拍摄的空间注册的高分辨率图像的变化反映了过程的质量,例如强度和覆盖。 这些图像还允许抑制或去除局部异常值变化。 可以有意地引入材料性质的各向异性,例如磁导率或电导率,以用于评估由诸如冷加工或热处理的操作引起的材料状况。 各向异性由提供定向性质测量的传感器确定。 传感器方向性来自使用线性传导驱动段将磁场施加在测试材料中的结构。 维持该驱动段和相关感测元件相对于材料边缘的方向为边缘处的裂纹检测提供了增强的灵敏度。

    Material characterization with model based sensors

    公开(公告)号:US20070069720A1

    公开(公告)日:2007-03-29

    申请号:US11229844

    申请日:2005-09-19

    IPC分类号: G01N27/82

    CPC分类号: G01N27/72

    摘要: Nondestructive material condition monitoring and assessment is accomplished by placing, mounting, or scanning magnetic and electric field sensors and sensor arrays over material surfaces. The material condition can be inferred directly from material property estimates, such as the magnetic permeability, dielectric permittivity, electrical property, or thickness, or from a correlation with these properties. Hidden cracks in multiple layer structures in the presence of fasteners are detected by combining multiple frequency magnetic field measurements and comparing the result to characteristic signature responses. The threshold value for indicating a crack is adjusted based on a high frequency measurement that accounts for fastener type. The condition of engine disk slot is determined without removal of the disk from the engine by placing near the disk a fixture that contains a sensor for scanning through the slot and means for recording position within the slot. Inflatable support structures can be placed behind the sensor to improve and a guide can be used to align sensor with the slot and for rotating the disk. The condition of an interface between a conducting substrate and a coating is assessed by placing a magnetic field sensor on the opposite side of the substrate from the coating and monitoring at least one model parameter for the material system, with the model parameter correlated to the interfacial condition. The model parameter is typically a magnetic permeability that reflects the residual stress at the interface. Sensors embedded between material layers are protected from damage by placing shims on the faying surface. After determining the areas to be monitored and the areas likely to cause sensor damage, a shim thickness is determined and is then placed in at least one area not being monitored by a sensor. The condition of a test fluid is assessed through a dielectric sensor containing a contaminant-sensitive material layer. The properties of the layer are monitored with the dielectric sensor and correlated to contaminant level.

    Hybrid wound/etched winding constructs for scanning and monitoring
    5.
    发明申请
    Hybrid wound/etched winding constructs for scanning and monitoring 审中-公开
    用于扫描和监测的混合伤口/蚀刻绕组结构

    公开(公告)号:US20050007106A1

    公开(公告)日:2005-01-13

    申请号:US10853009

    申请日:2004-05-24

    IPC分类号: G01N27/82 G01N27/90 G01N27/72

    CPC分类号: G01N27/9046 G01N27/82

    摘要: Combined wound and micro-fabricated winding constructs are described for the inspection of materials and the detection and characterization of hidden features or flaws. These constructs can be configured as sensors or sensor arrays that are surface mounted or scanned over conducting and/or magnetizable test materials. The well-defined geometry obtained micro-fabricated windings and from carefully wound coils with known winding positions permits the use of model based inversions of sensed responses into material properties. In a preferred embodiment, the primary winding is a wound coil and the sense elements are etched or printed. The drive or sense windings can also be mounted under fasteners to improve sensitivity to hidden flaws. Ferrites and other means may be used to guide the magnetic flux and enhance the magnetic field in the test material.

    摘要翻译: 描述了组合伤口和微制造的缠绕结构,用于材料的检查和隐藏特征或缺陷的检测和表征。 这些结构可以配置为在导电和/或可磁化测试材料上进行表面安装或扫描的传感器或传感器阵列。 精确定义的几何形状获得微制造的绕组和从已知缠绕位置的小心缠绕的线圈允许使用基于模型的感测响应的反演到材料特性中。 在优选实施例中,初级绕组是缠绕线圈,并且感测元件被蚀刻或印刷。 驱动或感测绕组也可以安装在紧固件下,以提高对隐藏缺陷的敏感性。 可以使用铁氧体等手段来引导磁通量并增强测试材料中的磁场。

    Quasistatic magnetic and electric field stress/strain gages
    6.
    发明申请
    Quasistatic magnetic and electric field stress/strain gages 失效
    准静态磁场和电场应力/应变计

    公开(公告)号:US20070245834A1

    公开(公告)日:2007-10-25

    申请号:US11702422

    申请日:2007-02-05

    IPC分类号: G01L3/02

    CPC分类号: G01L1/125

    摘要: Magnetic or electric field sensors are mounted against a material surface and used for stress, strain, and load monitoring of rotating components such as vehicle drive trains. The stationary sensors are mounted at multiple locations around the component and used assess the stress on the component at multiple rotational positions. The sensor response is typically converted into a material property, such as magnetic permeability or electrical conductivity, which accounts for any coating thickness that may be present between the sensor and mounting surface. The sensors are not in direct contact with the rotating component and are typically mounted on an annular material or ring that encircles the rotating component. Measurements of the annular material properties, such as the stress, are related to the stress on the rotating component and discrete features on the component. As a particular example, the rotating component is a planetary gear system, with sensors mounted on the ring gear and the discrete features are carrier plate posts. The sensors are preferably mounted at equal distances around the circumference of the component. The sensors and instrumentation may be removable and reusable for monitoring of additional components.

    摘要翻译: 磁场或电场传感器安装在材料表面上,用于对诸如车辆传动系的旋转部件进行应力,应变和负载监测。 固定式传感器安装在组件周围的多个位置,用于评估组件在多个旋转位置的应力。 传感器响应通常被转换成诸如磁导率或导电性的材料性质,其考虑了传感器和安装表面之间可能存在的任何涂层厚度。 传感器不与旋转部件直接接触,并且通常安装在环绕旋转部件的环形材料或环上。 环形材料特性(如应力)的测量与旋转部件上的应力和部件上的离散特征有关。 作为具体示例,旋转部件是行星齿轮系统,其中传感器安装在齿圈上,并且分立的特征是承载板柱。 传感器优选地围绕部件的圆周以相等的距离安装。 传感器和仪器可能是可拆卸的,可重复使用,用于监控附加部件。

    Magnetic field characterization of stresses and properties in materials
    8.
    发明申请
    Magnetic field characterization of stresses and properties in materials 审中-公开
    材料应力和性能的磁场表征

    公开(公告)号:US20070114993A1

    公开(公告)日:2007-05-24

    申请号:US11292146

    申请日:2005-11-30

    IPC分类号: G01R33/12

    CPC分类号: G01N27/9013

    摘要: Described are methods for monitoring of stresses and other material properties. These methods use measurements of effective electrical properties, such as magnetic permeability and electrical conductivity, to infer the state of the test material, such as the stress, temperature, or overload condition. The sensors, which can be single element sensors or sensor arrays, can be used to periodically inspect selected locations, mounted to the test material, or scanned over the test material to generate two-dimensional images of the material properties. Magnetic field or eddy current based inductive and giant magnetoresistive sensors may be used on magnetizable and/or conducting materials, while capacitive sensors can be used for dielectric materials. Methods are also described for the use of state-sensitive layers to determine the state of materials of interest. These methods allow the weight of articles, such as aircraft, to be determined.

    摘要翻译: 描述了用于监测应力和其他材料性质的方法。 这些方法使用诸如磁导率和电导率之类的有效电性能的测量来推断测试材料的状态,例如应力,温度或过载条件。 可以使用可以是单元件传感器或传感器阵列的传感器来周期性地检查安装到测试材料上的选定位置,或者在测试材料上扫描以产生材料特性的二维图像。 基于磁场或涡电流的感应和巨磁阻传感器可用于可磁化和/或导电材料,而电容传感器可用于介电材料。 还描述了使用状态敏感层来确定感兴趣的材料的状态的方法。 这些方法允许确定诸如飞机的物品的重量。

    Absolute property measurements using electromagnetic sensors
    9.
    发明申请
    Absolute property measurements using electromagnetic sensors 有权
    使用电磁传感器的绝对属性测量

    公开(公告)号:US20050127908A1

    公开(公告)日:2005-06-16

    申请号:US10963482

    申请日:2004-10-12

    IPC分类号: G01N27/02 G01N27/82

    CPC分类号: G01N27/023 G01N27/9046

    摘要: Methods and apparatus are described for absolute electrical property measurement of materials. This is accomplished with magnetic and electric field based sensors and sensor array geometries that can be modeled accurately and with impedance instrumentation that permits accurate measurements of the in-phase and quadrature phase signal components. A dithering calibration method is also described which allows the measurement to account for background material noise variations. Methods are also described for accounting for noise factors in sensor design and selection of the optimal operating conditions which can minimize the error bounds for material property estimates. Example application of these methods to automated engine disk slot inspection and assessment of the mechanical condition of dielectric materials are presented.

    摘要翻译: 对材料的绝对电气性能测量方法和设备进行了描述。 这是通过基于磁场和电场的传感器和传感器阵列几何形状来实现的,其可以被精确地建模并且具有允许精确测量同相和正交相位信号分量的阻抗测量。 还描述了抖动校准方法,其允许测量考虑背景材料噪声变化。 还描述了用于考虑传感器设计中的噪声因子和选择可以最小化材料性能估计的误差界限的最佳操作条件的方法。 介绍了将这些方法应用于自动化引擎盘槽检查和评估介电材料的机械状态。

    Hidden feature characterization using eddy current sensors and arrays
    10.
    发明申请
    Hidden feature characterization using eddy current sensors and arrays 有权
    使用涡流传感器和阵列的隐藏特征表征

    公开(公告)号:US20050088172A1

    公开(公告)日:2005-04-28

    申请号:US10934103

    申请日:2004-09-03

    IPC分类号: G01N27/90 G01N27/72

    CPC分类号: G01N27/9046

    摘要: Quasistatic sensor responses may be converted into multiple model parameters to characterize hidden properties of a material. Methods of conversion use databases of responses and, in some cases, databases that include derivatives of the responses, to estimate at least three unknown model parameters, such as the electrical conductivity, magnetic permeability, dielectric permittivity, thermal conductivity, and/or layer thickness. These parameter responses are then used to obtain a quantitative estimate of a property of a hidden feature, such as corrosion loss layer thicknesses, inclusion size and depth, or stress variation. The sensors can be single element sensors or sensor arrays and impose an interrogation electric, magnetic, or thermal field.

    摘要翻译: 准静态传感器响应可以转换成多个模型参数来表征材料的隐藏属性。 转换方法使用响应数据库,在某些情况下,包括响应的衍生物的数据库,估计至少三个未知模型参数,如电导率,磁导率,介电常数,导热系数和/或层厚度 。 然后使用这些参数响应来获得隐藏特征的性质的定量估计,例如腐蚀损失层厚度,夹杂物尺寸和深度或应力变化。 这些传感器可以是单元件传感器或传感器阵列,并且会产生询问电磁场或热场。