Abstract:
Technology is disclosed for performing background initialization on protection information enabled storage volumes or drives. In some embodiments, a storage controller generates multiple I/O requests for stripe segments of each drive (e.g., disk) of multiple drives of a RAID-based system (e.g., RAID-based disk array). The I/O requests are then sorted for each of the drives according to a pre-determined arrangement and initiated in parallel to the disks while enforcing the pre-determined arrangement. Sorting and issuing the I/O requests in the manner described herein can, for example, reduce drive head movement resulting in faster storage subsystem initialization.
Abstract:
A system and method for improving storage system performance by maintaining data integrity during bulk export to a cloud system is provided. A backup host reads a selected volume from the storage system via an I/O channel. The storage system remains online during bulk export and tracks I/O to the selected volume in a tracking log. The backup host compresses, encrypts, and calculates a checksum for each data block of the volume before writing a corresponding data object to export devices and sending a checksum data object to the cloud system. The devices are shipped to the cloud system, which imports the data objects and calculates a checksum for each. The storage system compares the imported checksums with the checksums in the checksum data object, and adds data blocks to the tracking log when errors are detected. An incremental backup is performed based on the contents of the tracking log.
Abstract:
Technology is disclosed for performing background initialization on protection information enabled storage volumes or drives. In some embodiments, a storage controller generates multiple I/O requests for stripe segments of each drive (e.g., disk) of multiple drives of a RAID-based system (e.g., RAID-based disk array). The I/O requests are then sorted for each of the drives according to a pre-determined arrangement and initiated in parallel to the disks while enforcing the pre-determined arrangement. Sorting and issuing the I/O requests in the manner described herein can, for example, reduce drive head movement resulting in faster storage subsystem initialization.
Abstract:
A system and method for improving storage system performance by maintaining data integrity during bulk export to a cloud system is provided. A backup host reads a selected volume from the storage system via an I/O channel. The storage system remains online during bulk export and tracks I/O to the selected volume in a tracking log. The backup host compresses, encrypts, and calculates a checksum for each data block of the volume before writing a corresponding data object to export devices and sending a checksum data object to the cloud system. The devices are shipped to the cloud system, which imports the data objects and calculates a checksum for each. The storage system compares the imported checksums with the checksums in the checksum data object, and adds data blocks to the tracking log when errors are detected. An incremental backup is performed based on the contents of the tracking log.
Abstract:
A system and method for improving storage system performance by maintaining data integrity during bulk export to a cloud system is provided. A backup host reads a selected volume from the storage system via an I/O channel. The storage system remains online during bulk export and tracks I/O to the selected volume in a tracking log. The backup host compresses, encrypts, and calculates a checksum for each data block of the volume before writing a corresponding data object to export devices and sending a checksum data object to the cloud system. The devices are shipped to the cloud system, which imports the data objects and calculates a checksum for each. The storage system compares the imported checksums with the checksums in the checksum data object, and adds data blocks to the tracking log when errors are detected. An incremental backup is performed based on the contents of the tracking log.
Abstract:
A system and method for improving storage system performance by maintaining data integrity during bulk export to a cloud system is provided. A backup host reads a selected volume from the storage system via an I/O channel. The storage system remains online during bulk export and tracks I/O to the selected volume in a tracking log. The backup host compresses, encrypts, and calculates a checksum for each data block of the volume before writing a corresponding data object to export devices and sending a checksum data object to the cloud system. The devices are shipped to the cloud system, which imports the data objects and calculates a checksum for each. The storage system compares the imported checksums with the checksums in the checksum data object, and adds data blocks to the tracking log when errors are detected. An incremental backup is performed based on the contents of the tracking log.
Abstract:
Technology is disclosed for performing background initialization on protection information enabled storage volumes or drives. In some embodiments, a storage controller generates multiple I/O requests for stripe segments of each drive (e.g., disk) of multiple drives of a RAID-based system (e.g., RAID-based disk array). The I/O requests are then sorted for each of the drives according to a pre-determined arrangement and initiated in parallel to the disks while enforcing the pre-determined arrangement. Sorting and issuing the I/O requests in the manner described herein can, for example, reduce drive head movement resulting in faster storage subsystem initialization.
Abstract:
A system and method for maintaining operation of a storage array with one or more failed storage devices and for quickly recovering when failing devices are replaced are provided. In some embodiments, the method includes receiving a data transaction directed to a volume and determining that a storage device associated with the volume is inoperable. In response to determining that the storage device is inoperable, a data extent is recorded in a change log in a storage controller cache. The data extent is associated with the data transaction and allocated to the storage device that is inoperable. The data transaction is performed using at least one other storage device associated with the volume, and data allocated to the storage device is subsequently reconstructed using the recorded data extent.
Abstract:
Technology is disclosed for performing background initialization on protection information enabled storage volumes or drives. In some embodiments, a storage controller generates multiple I/O requests for stripe segments of each drive (e.g., disk) of multiple drives of a RAID-based system (e.g., RAID-based disk array). The I/O requests are then sorted for each of the drives according to a pre-determined arrangement and initiated in parallel to the disks while enforcing the pre-determined arrangement. Sorting and issuing the I/O requests in the manner described herein can, for example, reduce drive head movement resulting in faster storage subsystem initialization.