Abstract:
Methods and systems for dynamic hashing in cache sub-systems are provided. The method includes analyzing a plurality of input/output (I/O) requests for determining a pattern indicating if the I/O requests are random or sequential; and using the pattern for dynamically changing a first input to a second input for computing a hash index value by a hashing function that is used to index into a hashing data structure to look up a cache block to cache an I/O request to read or write data, where for random I/O requests, a segment size is the first input to a hashing function to compute a first hash index value and for sequential I/O requests, a stripe size is used as the second input for computing a second hash index value.
Abstract:
Methods and systems for dynamic hashing in cache sub-systems are provided. The method includes analyzing a plurality of input/output (I/O) requests for determining a pattern indicating if the I/O requests are random or sequential; and using the pattern for dynamically changing a first input to a second input for computing a hash index value by a hashing function that is used to index into a hashing data structure to look up a cache block to cache an I/O request to read or write data, where for random I/O requests, a segment size is the first input to a hashing function to compute a first hash index value and for sequential I/O requests, a stripe size is used as the second input for computing a second hash index value.
Abstract:
A system and method for maintaining operation of a storage array with one or more failed storage devices and for quickly recovering when failing devices are replaced are provided. In some embodiments, the method includes receiving a data transaction directed to a volume and determining that a storage device associated with the volume is inoperable. In response to determining that the storage device is inoperable, a data extent is recorded in a change log in a storage controller cache. The data extent is associated with the data transaction and allocated to the storage device that is inoperable. The data transaction is performed using at least one other storage device associated with the volume, and data allocated to the storage device is subsequently reconstructed using the recorded data extent.
Abstract:
Technology is disclosed for generating predictive cache statistics for various cache sizes. In some embodiments, a storage controller includes a cache tracking mechanism for concurrently generating the predictive cache statistics for various cache sizes for a cache system. The cache tracking mechanism can track simulated cache blocks of a cache system using segmented cache metadata while performing an exemplary workload including various read and write requests (client-initiated I/O operations) received from client systems (or clients). The segmented cache metadata corresponds to one or more of the various cache sizes for the cache system.
Abstract:
Method and systems for a storage system are provided. Simulated cache blocks of a cache system are tracked using cache metadata while performing a workload having a plurality of storage operations. The cache metadata is segmented, each segment corresponding to a cache size. Predictive statistics are determined for each cache size using a corresponding segment of the cache metadata. The predictive statistics are used to determine an amount of data that is written for each cache size within certain duration. The process then determines if each cache size provides an endurance level after executing a certain number of write operations, where the endurance level indicates a desired life-cycle for each cache size.
Abstract:
Methods and systems for managing caching mechanisms in storage systems are provided where a global cache management function manages multiple independent cache pools and a global cache pool. As an example, the method includes: splitting a cache storage into a plurality of independently operating cache pools, each cache pool comprising storage space for storing a plurality of cache blocks for storing data related to an input/output (“I/O”) request and metadata associated with each cache pool; receiving the I/O request for writing a data; operating a hash function on the I/O request to assign the I/O request to one of the plurality of cache pools; and writing the data of the I/O request to one or more of the cache blocks associated with the assigned cache pool. In an aspect, this allows efficient I/O processing across multiple processors simultaneously.
Abstract:
Selective multiprocessing in a non-preemptive task scheduling environment is provided. Tasks of an application are grouped based on similar functionality and/or access to common code or data structures. The grouped tasks constitute a task core group, and each task core group may be mapped to a core in a multi-core processing system. A mutual exclusion approach reduces overhead imposed on the storage controller and eliminates the risk of concurrent access. A core guard routine is used when a particular application task in a first task core group requires access to a section of code or data structure associated with a different task core group. The application task is temporarily assigned to the second task core group. The application task executes the portion of code seeking access to the section of code or data structure. Once complete, the application task is reassigned back to its original task core group.
Abstract:
A method, a computing device, and a non-transitory machine-readable medium for changing ownership of a storage volume from a first controller to a second controller without flushing data, is provided. In the system, the first controller is associated with a first DRAM cache comprising a primary partition that stores data associated with the first controller and a mirror partition that stores data associated with the second controller. The second controller in the system is associated with a second DRAM cache comprising a primary partition that stores data associated with the second controller and the mirror partition associated with the first controller. Further, the mirror partition in the second DRAM cache stores a copy of a data in the primary partition of the first DRAM cache and the mirror partition in the first DRAM cache stores a copy of a data in the primary partition of the second DRAM cache.
Abstract:
Method and systems for a storage system are provided. Simulated cache blocks of a cache system are tracked using cache metadata while performing a workload having a plurality of storage operations. The cache metadata is segmented, each segment corresponding to a cache size. Predictive statistics are determined for each cache size using a corresponding segment of the cache metadata. The predictive statistics are used to determine an amount of data that is written for each cache size within certain duration. The process then determines if each cache size provides an endurance level after executing a certain number of write operations, where the endurance level indicates a desired life-cycle for each cache size.
Abstract:
A method, a computing device, and a non-transitory machine-readable medium for changing ownership of a storage volume from a first controller to a second controller without flushing data, is provided. In the system, the first controller is associated with a first DRAM cache comprising a primary partition that stores data associated with the first controller and a mirror partition that stores data associated with the second controller. The second controller in the system is associated with a second DRAM cache comprising a primary partition that stores data associated with the second controller and the mirror partition associated with the first controller. Further, the mirror partition in the second DRAM cache stores a copy of a data in the primary partition of the first DRAM cache and the mirror partition in the first DRAM cache stores a copy of a data in the primary partition of the second DRAM cache.