Abstract:
Technology is disclosed for performing background initialization on protection information enabled storage volumes or drives. In some embodiments, a storage controller generates multiple I/O requests for stripe segments of each drive (e.g., disk) of multiple drives of a RAID-based system (e.g., RAID-based disk array). The I/O requests are then sorted for each of the drives according to a pre-determined arrangement and initiated in parallel to the disks while enforcing the pre-determined arrangement. Sorting and issuing the I/O requests in the manner described herein can, for example, reduce drive head movement resulting in faster storage subsystem initialization.
Abstract:
Technology is disclosed for performing background initialization on protection information enabled storage volumes or drives. In some embodiments, a storage controller generates multiple I/O requests for stripe segments of each drive (e.g., disk) of multiple drives of a RAID-based system (e.g., RAID-based disk array). The I/O requests are then sorted for each of the drives according to a pre-determined arrangement and initiated in parallel to the disks while enforcing the pre-determined arrangement. Sorting and issuing the I/O requests in the manner described herein can, for example, reduce drive head movement resulting in faster storage subsystem initialization.
Abstract:
A system and method of transposed storage in RAID arrays includes a storage manager with an interface for receiving storage requests associated with multi-segment blocks stored in a storage array, a controller for processing the received storage requests and controlling the storage manager, and a write request handler. The storage array includes a plurality of storage devices for which consecutive logical addresses are assigned to different ones of the storage devices. The write request handler is configured to process block write requests and send segment write requests to the storage array based on the write requests so that each segment of a given multi-segment block is written to a single respective one of the storage devices in the storage array. In some embodiments, the storage manager further includes a read request handler configured to determine logical addresses of requested segments and send segment read requests to the storage array.
Abstract:
A system and method of transposed storage in RAID arrays includes a storage manager with an interface for receiving storage requests associated with multi-segment blocks stored in a storage array, a controller for processing the received storage requests and controlling the storage manager, and a write request handler. The storage array includes a plurality of storage devices for which consecutive logical addresses are assigned to different ones of the storage devices. The write request handler is configured to process block write requests and send segment write requests to the storage array based on the write requests so that each segment of a given multi-segment block is written to a single respective one of the storage devices in the storage array. In some embodiments, the storage manager further includes a read request handler configured to determine logical addresses of requested segments and send segment read requests to the storage array.
Abstract:
A system and method of transposed storage in RAID arrays includes a storage manager with an interface for receiving storage requests associated with multi-segment blocks stored in a storage array, a controller for processing the received storage requests and controlling the storage manager, and a write request handler. The storage array includes a plurality of storage devices for which consecutive logical addresses are assigned to different ones of the storage devices. The write request handler is configured to process block write requests and send segment write requests to the storage array based on the write requests so that each segment of a given multi-segment block is written to a single respective one of the storage devices in the storage array. In some embodiments, the storage manager further includes a read request handler configured to determine logical addresses of requested segments and send segment read requests to the storage array.
Abstract:
Technology is disclosed for performing background initialization on protection information enabled storage volumes or drives. In some embodiments, a storage controller generates multiple I/O requests for stripe segments of each drive (e.g., disk) of multiple drives of a RAID-based system (e.g., RAID-based disk array). The I/O requests are then sorted for each of the drives according to a pre-determined arrangement and initiated in parallel to the disks while enforcing the pre-determined arrangement. Sorting and issuing the I/O requests in the manner described herein can, for example, reduce drive head movement resulting in faster storage subsystem initialization.
Abstract:
A system and method of transposed storage in RAID arrays includes a storage manager with an interface for receiving storage requests associated with multi-segment blocks stored in a storage array, a controller for processing the received storage requests and controlling the storage manager, and a write request handler. The storage array includes a plurality of storage devices for which consecutive logical addresses are assigned to different ones of the storage devices. The write request handler is configured to process block write requests and send segment write requests to the storage array based on the write requests so that each segment of a given multi-segment block is written to a single respective one of the storage devices in the storage array. In some embodiments, the storage manager further includes a read request handler configured to determine logical addresses of requested segments and send segment read requests to the storage array.
Abstract:
Technology is disclosed for performing background initialization on protection information enabled storage volumes or drives. In some embodiments, a storage controller generates multiple I/O requests for stripe segments of each drive (e.g., disk) of multiple drives of a RAID-based system (e.g., RAID-based disk array). The I/O requests are then sorted for each of the drives according to a pre-determined arrangement and initiated in parallel to the disks while enforcing the pre-determined arrangement. Sorting and issuing the I/O requests in the manner described herein can, for example, reduce drive head movement resulting in faster storage subsystem initialization.