Abstract:
The disclosed techniques enable push-based piggybacking of a source-driven logical replication system. Logical replication of a data set (e.g., a snapshot) from a source node to a destination node can be achieved from a source-driven system while preserving the effects of storage efficiency operations (deduplication) applied at the source node. However, if missing data extents are detected at the destination, the destination has an extent pulling problem as the destination may not have knowledge of the physical layout on the source-side and/or mechanisms for requesting extents. The techniques overcome the extent pulling problem in a source-driven replication system by introducing specific protocols for obtaining missing extents within an existing replication environment by piggybacking data pushes from the source.
Abstract:
The disclosed techniques enable push-based piggybacking of a source-driven logical replication system. Logical replication of a data set (e.g., a snapshot) from a source node to a destination node can be achieved from a source-driven system while preserving the effects of storage efficiency operations (deduplication) applied at the source node. However, if missing data extents are detected at the destination, the destination has an extent pulling problem as the destination may not have knowledge of the physical layout on the source-side and/or mechanisms for requesting extents. The techniques overcome the extent pulling problem in a source-driven replication system by introducing specific protocols for obtaining missing extents within an existing replication environment by piggybacking data pushes from the source.
Abstract:
The disclosed techniques enable push-based piggybacking of a source-driven logical replication system. Logical replication of a data set (e.g., a snapshot) from a source node to a destination node can be achieved from a source-driven system while preserving the effects of storage efficiency operations (deduplication) applied at the source node. However, if missing data extents are detected at the destination, the destination has an extent pulling problem as the destination may not have knowledge of the physical layout on the source-side and/or mechanisms for requesting extents. The techniques overcome the extent pulling problem in a source-driven replication system by introducing specific protocols for obtaining missing extents within an existing replication environment by piggybacking data pushes from the source.
Abstract:
The disclosed techniques enable push-based piggybacking of a source-driven logical replication system. Logical replication of a data set (e.g., a snapshot) from a source node to a destination node can be achieved from a source-driven system while preserving the effects of storage efficiency operations (deduplication) applied at the source node. However, if missing data extents are detected at the destination, the destination has an extent pulling problem as the destination may not have knowledge of the physical layout on the source-side and/or mechanisms for requesting extents. The techniques overcome the extent pulling problem in a source-driven replication system by introducing specific protocols for obtaining missing extents within an existing replication environment by piggybacking data pushes from the source.
Abstract:
The disclosed techniques enable push-based piggybacking of a source-driven logical replication system. Logical replication of a data set (e.g., a snapshot) from a source node to a destination node can be achieved from a source-driven system while preserving the effects of storage efficiency operations (deduplication) applied at the source node. However, if missing data extents are detected at the destination, the destination has an extent pulling problem as the destination may not have knowledge of the physical layout on the source-side and/or mechanisms for requesting extents. The techniques overcome the extent pulling problem in a source-driven replication system by introducing specific protocols for obtaining missing extents within an existing replication environment by piggybacking data pushes from the source.
Abstract:
The disclosed techniques enable push-based piggybacking of a source-driven logical replication system. Logical replication of a data set (e.g., a snapshot) from a source node to a destination node can be achieved from a source-driven system while preserving the effects of storage efficiency operations (deduplication) applied at the source node. However, if missing data extents are detected at the destination, the destination has an extent pulling problem as the destination may not have knowledge of the physical layout on the source-side and/or mechanisms for requesting extents. The techniques overcome the extent pulling problem in a source-driven replication system by introducing specific protocols for obtaining missing extents within an existing replication environment by piggybacking data pushes from the source.