Abstract:
The instant disclosure provides a data structure store system and a method of managing data in the store. The method includes receiving, by a data structure store management system, a request for storing data from a client. In the created data structure, each data element includes a portion of the data. On receiving a read request for at least part of the data, the data structure store management system provides at least part of the data to a recipient device. The data elements are stored in persistent memory in the form of one or more non-volatile random access devices, wherein during a time interval between receiving the storing request and providing the at least part of the data by the data structure store management system to the recipient device, the data structure store management system provides no portion of the data for writing to a hard disk drive.
Abstract:
A method, non-transitory computer readable medium, and archive node computing device that receives an indication of each of a plurality of archived files required to service a job from one of a plurality of compute node computing devices of an analytics tier. An optimized schedule for retrieving the archived files from one or more archive storage devices of an archive tier is generated. The optimized schedule is provided to the one of the plurality of compute node computing devices. Requests for the archived files received from the one of the plurality of compute node computing device and at least one other of the plurality of compute node computing devices, wherein the requests are sent according to the optimized schedule.
Abstract:
The instant disclosure provides a data structure store system and a method of managing data in the store. The method includes receiving, by a data structure store management system, a request for storing data from a client. In the created data structure, each data element includes a portion of the data. On receiving a read request for at least part of the data, the data structure store management system provides at least part of the data to a recipient device. The data elements are stored in persistent memory in the form of one or more non-volatile random access devices, wherein during a time interval between receiving the storing request and providing the at least part of the data by the data structure store management system to the recipient device, the data structure store management system provides no portion of the data for writing to a hard disk drive.
Abstract:
A method, device and non-transitory computer readable medium that manages read access includes organizing a plurality of requests for objects on one or more storage media, such as tapes or spin-down disks, based on at least a deadline for each of the plurality of requests. One of one or more replicas for each of the objects on the one or more storage media is selected based on one or more factors. An initial schedule for read access is generated based at least on the deadline for each of the plurality of requests, the selected one of the replicas for each of the objects, and availability of one or more drives. The initial schedule for read access on the one or more of the drives for each of the plurality of requests for the objects is provided.
Abstract:
The instant disclosure provides a data structure store system and a method of managing data in the store. The method includes receiving, by a data structure store management system, a request for storing data from a client. In the created data structure, each data element includes a portion of the data. On receiving a read request for at least part of the data, the data structure store management system provides at least part of the data to a recipient device. The data elements are stored in persistent memory in the form of one or more non-volatile random access devices, wherein during a time interval between receiving the storing request and providing the at least part of the data by the data structure store management system to the recipient device, the data structure store management system provides no portion of the data for writing to a hard disk drive.
Abstract:
A rebuild node of a storage system can assess risk of the storage system not being able to provide a data object. The rebuild node(s) uses information about data object fragments to determine health of a data object, which relates to the risk assessment. The rebuild node obtains object fragment information from nodes throughout the storage system. With the object fragment information, the rebuild node(s) can assess object risk based, at least in part, on the object fragments indicated as existing by the nodes. To assess object risk, the rebuild node(s) treats absent object fragments (i.e., those for which an indication was not received) as lost. When too many object fragments are lost, an object cannot be rebuilt. The erasure coding technique dictates the threshold number of fragments for rebuilding an object. The risk assessment per object influences rebuild of the objects.
Abstract:
The instant disclosure provides a data structure store system and a method of managing data in the store. The method includes receiving, by a data structure store management system, a request for storing data from a client. In the created data structure, each data element includes a portion of the data. On receiving a read request for at least part of the data, the data structure store management system provides at least part of the data to a recipient device. The data elements are stored in persistent memory in the form of one or more non-volatile random access devices, wherein during a time interval between receiving the storing request and providing the at least part of the data by the data structure store management system to the recipient device, the data structure store management system provides no portion of the data for writing to a hard disk drive.
Abstract:
The instant disclosure provides a data structure store system and a method of managing data in the store. The method includes receiving, by a data structure store management system, a request for storing data from a client. In the created data structure, each data element includes a portion of the data. On receiving a read request for at least part of the data, the data structure store management system provides at least part of the data to a recipient device. The data elements are stored in persistent memory in the form of one or more non-volatile random access devices, wherein during a time interval between receiving the storing request and providing the at least part of the data by the data structure store management system to the recipient device, the data structure store management system provides no portion of the data for writing to a hard disk drive.
Abstract:
The instant disclosure provides a data structure store system and a method of managing data in the store. The method includes receiving, by a data structure store management system, a request for storing data from a client. In the created data structure, each data element includes a portion of the data. On receiving a read request for at least part of the data, the data structure store management system provides at least part of the data to a recipient device. The data elements are stored in persistent memory in the form of one or more non-volatile random access devices, wherein during a time interval between receiving the storing request and providing the at least part of the data by the data structure store management system to the recipient device, the data structure store management system provides no portion of the data for writing to a hard disk drive.
Abstract:
A rebuild node of a storage system can assess risk of the storage system not being able to provide a data object. The rebuild node(s) uses information about data object fragments to determine health of a data object, which relates to the risk assessment. The rebuild node obtains object fragment information from nodes throughout the storage system. With the object fragment information, the rebuild node(s) can assess object risk based, at least in part, on the object fragments indicated as existing by the nodes. To assess object risk, the rebuild node(s) treats absent object fragments (i.e., those for which an indication was not received) as lost. When too many object fragments are lost, an object cannot be rebuilt. The erasure coding technique dictates the threshold number of fragments for rebuilding an object. The risk assessment per object influences rebuild of the objects.