摘要:
The system displays an image portraying a virtual space as viewed by a virtual camera at a first location on a spatially navigable camera surface within the virtual space. A user begins a drag operation. Based on the dragging, the virtual camera is spatially translated from the first location on the spatially navigable region to a second location on the spatially navigable region. The orientation of the virtual camera at the second location may be automatically set to either point towards the pre-defined look-at point or to point in a direction normal to the spatially navigable region at the second location. The system then displays an image portraying the virtual space in accordance with the location and orientation of the virtual camera at the second location in the spatially navigable camera surface. While the drag operation continues, the system determines that further translating the virtual camera would place the virtual camera beyond the spatially navigable region. In response, the system begins displaying a transition, which may be an interpolated animation of the virtual camera, an animation semi-transparently blended with a slate, a pre-authored animation of the virtual camera, or other visual effect. While further continuing to drag, and based on the same, the system either advances display of the transition, reverses display of the transition, or otherwise temporally controls the display of the transition.
摘要:
The present invention is a system that allows a number of 3D volumetric display or output configurations, such as dome, cubical and cylindrical volumetric displays, to interact with a number of different input configurations, such as a three-dimensional position sensing system having a volume sensing field, a planar position sensing system having a digitizing tablet, and a non-planar position sensing system having a sensing grid formed on a dome. The user interacts via the input configurations, such as by moving a digitizing stylus on the sensing grid formed on the dome enclosure surface. This interaction affects the content of the volumetric display by mapping positions and corresponding vectors of the stylus to a moving cursor within the 3D display space of the volumetric display that is offset from a tip of the stylus along the vector.
摘要:
A system that provides a bimanual user interface in which an input device is provided for each of the users hands, a left hand (LH) device and a right hand (RH) device. The input devices are used in conjunction with a large format, upright, human scale display at which the user can stand and upon which the input devices are moved. The positions of the input devices on the display are marked by displayed cursors. The system detects the position of the input devices relative to the display and draws a vector corresponding to unfastened tape between positions of cursors of the corresponding input devices and pointing from the LH device to the RH device. By changing the state of the LH input device the unfastened tape can be fastened or pinned along the vector as the user moves the LH device toward the RH device. By changing the state of the RH device, the tape can be unfastened by moving the LH device away from the RH device. Straight lines are drawn by holding the RH fixed while the LH pins the tape. Curves are drawn by moving the RH device while the LH device pins the tape. The switch between straight and curved lines occurs without an explicit mode switch simply by keeping the RH device fixed or moving it. The radius of the curvature of curved lines corresponds to the separation between the LH and RH devices.
摘要:
The present invention is a system that creates a volumetric display and a user controllable volumetric pointer within the volumetric display. The user can point by aiming a beam which is vector, planar or tangent based, positioning a device in three-dimensions in association with the display, touching a digitizing surface of the display enclosure or otherwise inputting position coordinates. The cursor can take a number of different forms including a ray, a point, a volume and a plane. The ray can include a ring, a bead, a segmented wand, a cone and a cylinder. The user designates an input position and the system maps the input position to a 3D cursor position within the volumetric display. The system also determines whether any object has been designated by the cursor by determining whether the object is within a region of influence of the cursor. The system also performs any function activated in association with the designation.
摘要:
The present invention is a system that creates a volumetric display and a user controllable volumetric pointer within the volumetric display. The user can point by aiming a beam which is vector, planar or tangent based, positioning a device in three-dimensions in association with the display, touching a digitizing surface of the display enclosure or otherwise inputting position coordinates. The cursor can take a number of different forms including a ray, a point, a volume and a plane. The ray can include a ring, a bead, a segmented wand, a cone and a cylinder. The user designates an input position and the system maps the input position to a 3D cursor position within the volumetric display. The system also determines whether any object has been designated by the cursor by determining whether the object is within a region of influence of the cursor. The system also performs any function activated in association with the designation.
摘要:
The present invention is a system that manages a volumetric display using volume windows. The volume windows have the typical functions, such as minimize, resize, etc., which operate in a volume. When initiated by an application a volume window is assigned to the application in a volume window data structure. Application data produced by the application is assigned to the windows responsive to which applications are assigned to which windows in the volume window data structure. Input events are assigned to the windows responsive to whether they are spatial or non-spatial. Spatial events are assigned to the window surrounding the event or cursor where a policy resolves situations where more than one window surrounds the cursor. Non-spatial events are assigned to the active or working window.
摘要:
The present invention is a system that places 2D user interface widgets in optimal positions in a 3D volumetric display where they can be easily used based on the knowledge user have about traditional 2D display systems. The widgets are placed on a shell or outer edge surface of a volumetric display, in a ring around the outside bottom of the display, in a vertical or horizontal plane within the display and/or responsive to the users focus of attention. Virtual 2D widgets are mapped to volumetric voxels of the 3D display system. This mapping includes any mapping between a 2D representation or virtual display map of the widget to the corresponding voxels. For example, a 2D texture map of the widget image may be mapped into voxels. Control actions in the 3D volume initiated by conventional control devices, such as a mouse or a touch sensitive dome enclosure surface, are mapped to controls of the widgets and appropriate control functions are performed.
摘要:
The present invention is a system that creates a volumetric display and a user controllable volumetric pointer within the volumetric display. The user can point by aiming a beam which is vector, planar or tangent based, positioning a device in three-dimensions in association with the display, touching a digitizing surface of the display enclosure or otherwise inputting position coordinates. The cursor can take a number of different forms including a ray, a point, a volume and a plane. The ray can include a ring, a bead, a segmented wand, a cone and a cylinder. The user designates an input position and the system maps the input position to a 3D cursor position within the volumetric display. The system also determines whether any object has been designated by the cursor by determining whether the object is within a region of influence of the cursor. The system also performs any function activated in association with the designation.
摘要:
The present invention is a system that allows a user to physically rotate a three-dimensional volumetric display enclosure with a corresponding rotation of the display contents. The rotation of the enclosure is sampled with an encoder and the display is virtually rotated by a computer maintaining the scene by an amount corresponding to the physical rotation before being rendered. This allows the user to remain in one position while viewing different parts of the displayed scene corresponding to different viewpoints. The display contents can be rotated in direct correspondence with the display enclosure or with a gain (positive or negative) that accelerates the rotation of the contents with respect to the physical rotation of the enclosure. Any display widgets in the scene, such as a virtual keyboard, can be maintained stationary with respect to the user while scene contents rotate by applying a negative rotational gain to the widgets. The rotation can also be controlled by a time value such that the rotation continues until a specified time is reached or expires.
摘要:
The present invention is a system that manages a volumetric display using volume windows. The volume windows have the typical functions, such as minimize, resize, etc., which operate in a volume. When initiated by an application a volume window is assigned to the application in a volume window data structure. Application data produced by the application is assigned to the windows responsive to which applications are assigned to which windows in the volume window data structure. Input events are assigned to the windows responsive to whether they are spatial or non-spatial. Spatial events are assigned to the window surrounding the event or cursor where a policy resolves situations where more than one window surrounds the cursor. Non-spatial events are assigned to the active or working window.