摘要:
An inshot gas burner having an overall length of less than four inches that is capable of delivering between 5,000 and 5,800 Btus per unit length of burner per hour. The burner venturi section with a flame retainer positioned at its outlet that produces a firing rate of at least 9,900 Btus per inch of diffuser length.
摘要:
A method for in-situ monitoring of an emission product includes transmitting a light, tuning the light to a first wavelength, receiving the light at a second location, varying the light from the first wavelength to a second wavelength during a first period, measuring a first absorption line and a first non-absorbing baseline signal during the first period, switching the light to a third wavelength, varying the light from the third wavelength to a fourth wavelength over a second period, and measuring a second absorption line and a second non-absorbing baseline signal during the second period. The light is transmitted from a first location by a tunable light source and received at a second location. The light passes along an optical path through the emission product between the first and second locations. The first wavelength corresponds to the first absorption line of the emission product. The third wavelength is different from the first and second wavelengths.
摘要:
A burner system for a furnace (10) includes an in-shot burner (20) having an axially elongated tubular nozzle (40) having an inlet end (42), an outlet end (44) and a venturi transition section (46) therebetween. At least a portion of a catalyst body (50) is disposed within the outlet end (44) of the burner (40). The catalyst body (50) supports a partial oxidization catalyst operative to catalyze the fuel in the primary air/fuel mixture to intermediate combustion species, including hydrogen and carbon monoxide, thereby reducing emissions such as nitrogen oxides.
摘要:
Systems and methods for controlling compressor extraction air flows from a compressor of a turbine system during engine turn down are provided. In one embodiment, a method for controlling compressor extraction air flows from a compressor of a turbine system during turn down includes a control unit monitoring one or more operating parameters of a turbine system associated with an exit temperature of a combustor of the turbine system. The method further includes the control unit detecting one or more operating parameters meeting or exceeding a threshold associated with a decrease in the exit temperature of the combustor. In response to detecting one or more operating parameter meeting or exceeding the threshold, a control signal is transmitted to at least one variable orifice located in the turbine system causing at least one variable orifice to alter at least one extraction air flow from the compressor.
摘要:
Systems and methods for controlling compressor extraction air flows from a compressor of a turbine system during engine turn down are provided. In one embodiment, a method for controlling compressor extraction air flows from a compressor of a turbine system during turn down includes a control unit monitoring one or more operating parameters of a turbine system associated with an exit temperature of a combustor of the turbine system. The method further includes the control unit detecting one or more operating parameters meeting or exceeding a threshold associated with a decrease in the exit temperature of the combustor. In response to detecting one or more operating parameter meeting or exceeding the threshold, a control signal is transmitted to at least one variable orifice located in the turbine system causing at least one variable orifice to alter at least one extraction air flow from the compressor.
摘要:
An outdoor condensing furnace is provided with a condensate drain line which passes through the heat exchange compartment and to a location within the building where it can be discharged at temperatures above freezing. During heating operation, the drain line is maintained at temperatures above freezing such that the condensate will not freeze, and if condensate is trapped in the drain line and freezes during periods of nonheating operation, then it will be quickly thawed when heating operation is resumed. In an alternate embodiment, a drain pan is placed in direct contact with the primary heat exchanger and the condensate is routed to drain pan to be vaporized. Another embodiment provides for routing of the condensate from the condensing heat exchanger, through a flue pipe, and to a drain site which is at above freezing ambient conditions.