Abstract:
An objective assessment method for a stereoscopic image quality combined with manifold characteristics and binocular characteristics trains a matrix after dimensionality reduction and whitening obtained from natural scene plane images through an orthogonal locality preserving projection algorithm, for obtaining a best mapping matrix. Image blocks, not important for visual perception, are removed. After finishing selecting the image blocks, through the best mapping matrix, manifold characteristic vectors of the image blocks are extracted, and a structural distortion of a distorted image is measured according to a manifold characteristic similarity. Considering influences of an image luminance variation on human eyes, a luminance distortion of the distorted image is calculated according to a mean value of the image blocks. After obtaining the manifold similarity and the luminance similarity, quality values of the left and right viewpoint images are processed with linear weighting to obtain a quality value of the distorted stereoscopic image.
Abstract:
An objective assessment method for a color image quality based on online manifold learning considers a relationship between a saliency and an image quality objective assessment. Through a visual saliency detection algorithm, saliency maps of a reference image and a distorted image are obtained for further obtaining a maximum fusion saliency map. Based on maximum saliencies of image blocks in the maximum fusion saliency map, a saliency difference between each reference image block and a corresponding distorted image block is measured through an absolute difference, and thus reference visual important image blocks and distorted visual important image blocks are screened and extracted. Through manifold eigenvectors of the reference visual important image blocks and the distorted visual important image blocks, an objective quality assessment value of the distorted image is calculated. The method has an increased assessment effect and a higher correlation between an objective assessment result and a subjective perception.
Abstract:
An objective assessment method for a stereoscopic image quality combined with manifold characteristics and binocular characteristics trains a matrix after dimensionality reduction and whitening obtained from natural scene plane images through an orthogonal locality preserving projection algorithm, for obtaining a best mapping matrix. Image blocks, not important for visual perception, are removed. After finishing selecting the image blocks, through the best mapping matrix, manifold characteristic vectors of the image blocks are extracted, and a structural distortion of a distorted image is measured according to a manifold characteristic similarity. Considering influences of an image luminance variation on human eyes, a luminance distortion of the distorted image is calculated according to a mean value of the image blocks. After obtaining the manifold similarity and the luminance similarity, quality values of the left and right viewpoint images are processed with linear weighting to obtain a quality value of the distorted stereoscopic image.
Abstract:
An objective assessment method for a color image quality based on online manifold learning considers a relationship between a saliency and an image quality objective assessment. Through a visual saliency detection algorithm, saliency maps of a reference image and a distorted image are obtained for further obtaining a maximum fusion saliency map. Based on maximum saliencies of image blocks in the maximum fusion saliency map, a saliency difference between each reference image block and a corresponding distorted image block is measured through an absolute difference, and thus reference visual important image blocks and distorted visual important image blocks are screened and extracted. Through manifold eigenvectors of the reference visual important image blocks and the distorted visual important image blocks, an objective quality assessment value of the distorted image is calculated. The method has an increased assessment effect and a higher correlation between an objective assessment result and a subjective perception.