Abstract:
A medical implant and a method of implanting a medical implant are described. The medical implant can be elongate and for fixation in a patient, and can include an apical bone anchoring portion for bone apposition, and an unthreaded coronal portion. The coronal portion can have a length (L2) exceeding or equaling a length (L1) of the apical portion. The apical portion can have a maximum outer diameter (D1) that is equal to or larger than a maximum outer diameter (D2) of the coronal portion. In a method of implanting a medical implant, an apical part can be affixed in the zygomatic bone, and a coronal part can be positioned outside the maxilla in the mucous membrane.
Abstract:
A medical implant and a method of implanting a medical implant are disclosed. In some embodiments, the medical implant can include an apical bone anchoring portion for bone apposition and an unthreaded coronal portion. The coronal portion can have a length (L2) exceeding or equaling a length (L1) of the apical portion. Further, in some embodiments, the apical portion has a maximum outer diameter (D1) that is equal to or larger than a maximum outer diameter (D2) of the coronal portion. In some embodiments of the method, an apical part of an implant is affixed in the zygomatic bone and a coronal part is positioned outside the maxilla in the mucous membrane.
Abstract:
An implant is provided with an upper portion in which an internal socket extends. The implant can be tightened by a turning instrument which has first lateral surfaces that can cooperate with corresponding second lateral surfaces in the internal socket. One or more of the first and/or second lateral surfaces is/are arranged completely or partially with friction-enhancing means. The implant and the tool are arranged with interacting parts which extend beyond the first and second lateral surfaces and completely or substantially take up bending moments which act in or on said portion or are directed toward said portion and occur in the event of skewing, or a tendency toward skewing, between the implant and the tool. The arrangement counteracts mechanical stresses in said portion, the latter being able to retain its original shape even in the case of implants with small dimensions.
Abstract:
A medical implant and a method of implanting a medical implant are disclosed. The medical implant (20) is elongate and for fixation in a patient, and comprises an apical bone anchoring portion (200) for bone apposition, and an unthreaded coronal portion (210), wherein said coronal portion (210) has a length (L2) exceeding or equaling a length (L1) of said apical portion (200), and wherein said apical portion (200) has a maximum outer diameter (D1) that is equal to or larger than a maximum outer diameter (D2) of said coronal portion. In a method of implanting a medical implant, an apical part is affixed in the zygomatic bone, and a coronal part is positioned outside the maxilla in the mucous membrane.
Abstract:
The present invention relates to an abutment (10, 100), comprising: a ceramic part (12, 112); and a metal adapter (14, 114) removably attachable to the ceramic part, wherein the metal adapter has a conical connection interface (16) for attachment to a dental implant (18). The present invention also relates to a method of attaching an abutment (10) to a dental implant (18).
Abstract:
The present application relates to an abutment system (12) and its use. The abutment system (12) comprises: a soft tissue level abutment part (10) adapted to be attached to a bone level dental implant (40) by means of an abutment screw (56), wherein the abutment system is adapted to selectively support both a cement-retained final restoration (66) and a screw-retained prosthetic component (68; 70). The present application also relates to dental methods.
Abstract:
A combination of a guide sleeve for a surgical template, a drill, and a thread forming tool is disclosed. The guide sleeve has a guide surface for guiding the thread forming tool. The drill has at least one cutting edge for cutting a recess in bone. The thread forming tool has a thread forming section for forming at least one thread in bone, and a guide section for guidance by the guide surface of the guide sleeve, the thread forming section comprising an apical portion, and a coronal portion. A maximum diameter of the apical portion of the thread forming section is smaller than or equal to a maximum diameter of the cutting edge of the drill.
Abstract:
A combination of a guide sleeve for a surgical template, a drill, and a thread forming tool is disclosed. The guide sleeve has a guide surface for guiding the thread forming tool. The drill has at least one cutting edge for cutting a recess in bone. The thread forming tool has a thread forming section for forming at least one thread in bone, and a guide section for guidance by the guide surface of the guide sleeve, the thread forming section comprising an apical portion, and a coronal portion. A maximum diameter of the apical portion of the thread forming section is smaller than or equal to a maximum diameter of the cutting edge of the drill.
Abstract:
An implant is provided with an upper portion in which an internal socket extends. The implant can be tightened by a turning instrument which has first lateral surfaces that can cooperate with corresponding second lateral surfaces in the internal socket. One or more of the first and/or second lateral surfaces is/are arranged completely or partially with friction-enhancing means. The implant and the tool are arranged with interacting parts which extend beyond the first and second lateral surfaces and completely or substantially take up bending moments which act in or on said portion or are directed toward said portion and occur in the event of skewing, or a tendency toward skewing, between the implant and the tool. The arrangement counteracts mechanical stresses in said portion, the latter being able to retain its original shape even in the case of implants with small dimensions.
Abstract:
The present application relates to an abutment system (12) and its use. The abutment system (12) comprises: a soft tissue level abutment part (10) adapted to be attached to a bone level dental implant (40) by means of an abutment screw (56), wherein the abutment system is adapted to selectively support both a cement-retained final restoration (66) and a screw-retained prosthetic component (68; 70). The present application also relates to dental methods.