摘要:
To provide an electron beam system capable of performing three-dimensional measurement of a sample with high precision irrespective of the tilt angle and height of the sample. The electron beam system has a correction factor storing section 32 for storing a correction factor at a reference tilt angle with respect to a plane which is used to tilt a sample by a sample tilting section 5, an approximate coordinate measuring section 28 for obtaining an approximate shape or approximate coordinate values of the sample based on an output corresponding to a stereo image from an electron beam detecting section 4, an image correcting section 30 for correcting the stereo image according to the tilt angle created by the sample tilting section 5 based on the shape or coordinate values of the sample obtained in the approximate coordinate measuring section 28 using a correction factor stored in the correction factor storing section 32, and a precise coordinate measuring section 34 for obtaining a shape or coordinate values of the sample which are more precise than those obtained in the approximate coordinate measuring section 28 based on a corrected stereo image obtained in the image correcting section 30.
摘要:
To provide an electron beam system capable of performing three-dimensional measurement of a sample with high precision irrespective of the tilt angle and height of the sample. The electron beam system has a correction factor storing section 32 for storing a correction factor at a reference tilt angle with respect to a plane which is used to tilt a sample by a sample tilting section 5, an approximate coordinate measuring section 28 for obtaining an approximate shape or approximate coordinate values of the sample based on an output corresponding to a stereo image from an electron beam detecting section 4, an image correcting section 30 for correcting the stereo image according to the tilt angle created by the sample tilting section 5 based on the shape or coordinate values of the sample obtained in the approximate coordinate measuring section 28 using a correction factor stored in the correction factor storing section 32, and a precise coordinate measuring section 34 for obtaining a shape or coordinate values of the sample which are more precise than those obtained in the approximate coordinate measuring section 28 based on a corrected stereo image obtained in the image correcting section 30.
摘要:
To provide an electron beam system capable of performing three-dimensional measurement of a sample with high precision irrespective of the tilt angle and height of the sample. The electron beam system has a correction factor storing section 32 for storing a correction factor at a reference tilt angle with respect to a plane which is used to tilt a sample by a sample tilting section 5, an approximate coordinate measuring section 28 for obtaining an approximate shape or approximate coordinate values of the sample based on an output corresponding to a stereo image from an electron beam detecting section 4, an image correcting section 30 for correcting the stereo image according to the tilt angle created by the sample tilting section 5 based on the shape or coordinate values of the sample obtained in the approximate coordinate measuring section 28 using a correction factor stored in the correction factor storing section 32, and a precise coordinate measuring section 34 for obtaining a shape or coordinate values of the sample which are more precise than those obtained in the approximate coordinate measuring section 28 based on a corrected stereo image obtained in the image correcting section 30.
摘要:
To provide an electron beam system capable of performing three-dimensional measurement of a sample with high precision irrespective of the tilt angle and height of the sample. The electron beam system has a correction factor storing section 32 for storing a correction factor at a reference tilt angle with respect to a plane which is used to tilt a sample by a sample tilting section 5, an approximate coordinate measuring section 28 for obtaining an approximate shape or approximate coordinate values of the sample based on an output corresponding to a stereo image from an electron beam detecting section 4, an image correcting section 30 for correcting the stereo image according to the tilt angle created by the sample tilting section 5 based on the shape or coordinate values of the sample obtained in the approximate coordinate measuring section 28 using a correction factor stored in the correction factor storing section 32, and a precise coordinate measuring section 34 for obtaining a shape or coordinate values of the sample which are more precise than those obtained in the approximate coordinate measuring section 28 based on a corrected stereo image obtained in the image correcting section 30.
摘要:
A three-dimensional coordinate measuring apparatus has a first and second incident angle adjusting sections for adjusting the attitude of the object in the directions of first and second neutral axes, respectively, to adjust the incident angle of the beam projected on the object from an imaging optical system relative to the object so that first and second stereoscopic images of the object can be formed, a matching process section for searching for corresponding points corresponding to measurement points in first and second search directions generally perpendicular to the first and second neutral axes, respectively, in the first and second stereoscopic images, and a shape measuring section for obtaining three-dimensional coordinate data of the object based on the relation between the measurement points and the corresponding points in the first and second stereoscopic images.
摘要:
A lens layout setting apparatus for lens grinding processing apparatus having a display screen of a display device for various settings for processing data of eyeglass lens shape for an eyeglass frame, and data of lens grinding process to grind the lens based on the data of lens shape for the frame, further including a control means to add, delete or rearrange a setting condition. The display device displays data of eyeglass lens shape for an eyeglass frame, and of eyeglass lens grinding process required for grinding the lens based on the data, and further displays tabs arranged to display a layout operating screen to set a layout of the data of lens shape for the frame, a state of measuring an edge thickness of the lens, simulation of the shape of a V-shaped protrusion formed on an edge of the lens, and a grinding process screen.
摘要:
The object of the invention is to provide a favorable spectral characteristic that reduces variation depending on the frequency of received light intensity, and that is gentle on a subject eye. It also eliminates displacement between positions of respective spectral images of the same part even if a change in alignment occurs between the eye and apparatus with the lapse of time. An apparatus 1 for measuring spectral fundus image data of this invention comprises: an illumination optical system 10 having an illumination light source 11 that emits a light beam in a specified wavelength range; a light receiving optical system 20 for forming a fundus image on the light receiving surface of a photographing section 4; a liquid crystal wavelength tunable filter 32 capable of choosing a wavelength of a transmitted light beam in a specified wavelength range; a spectral characteristic correction filter 13 having wavelength characteristic for correcting the wavelength characteristic of the emitted light intensity of the illumination light source 11 and the transmission wavelength characteristic of the wavelength tunable filter 32 so that the received light intensity on the light receiving surface is kept within the specified range; and a data measuring section 7 for taking the spectral fundus image data from the light receiving surface while changing the wavelength of the light beam passing through the wavelength tunable filter 32.
摘要:
To provide a spectroscopic fundus measuring apparatus capable of identifying each part in spectral fundus images easily and accurately based on its spectral characteristic and a measuring method therefor. A spectral fundus image measuring apparatus 1 of the present invention includes: an illumination optical system 10 having an illumination light source 11 for illuminating a fundus; a light receiving optical system 20 for receiving a wavelength-tunable light beam reflected from the illuminated fundus to photograph a series of spectral fundus images of different wavelengths; an image processing section 7 for processing the spectral fundus images; a storage section 7A for storing the spectral fundus images; and a display section 7B for displaying the spectral fundus images. The image processing section 7 has a position correcting section 72 for correcting the series of spectral fundus images photographed by the light receiving optical system 20 to match the positions of the same parts therein, and an image extracting section 74 for extracting spectral fundus images in wavelength ranges predetermined for respective specific parts from the series of spectral fundus images corrected in the position correcting section 72.
摘要:
The object of the invention is to provide a favorable spectral characteristic that reduces variation depending on the frequency of received light intensity, and that is gentle on a subject eye. It also eliminates displacement between positions of respective spectral images of the same part even if a change in alignment occurs between the eye and apparatus with the lapse of time. An apparatus 1 for measuring spectral fundus image data of this invention comprises: an illumination optical system 10 having an illumination light source 11 that emits a light beam in a specified wavelength range; a light receiving optical system 20 for forming a fundus image on the light receiving surface of a photographing section 4; a liquid crystal wavelength tunable filter 32 capable of choosing a wavelength of a transmitted light beam in a specified wavelength range; a spectral characteristic correction filter 13 having wavelength characteristic for correcting the wavelength characteristic of the emitted light intensity of the illumination light source 11 and the transmission wavelength characteristic of the wavelength tunable filter 32 so that the received light intensity on the light receiving surface is kept within the specified range; and a data measuring section 7 for taking the spectral fundus image data from the light receiving surface while changing the wavelength of the light beam passing through the wavelength tunable filter 32.
摘要:
A lens layout display apparatus for lens grinding processing apparatus having a display screen on which is displayed data of eyeglass lens shape for an eyeglass frame, and data of eyeglass lens grinding process to grind the eyeglass lens based on the data of eyeglass lens shape for an eyeglass frame, the display means also displaying various icons which show a state of measuring an edge thickness of the eyeglass lens, a state of simulation of the shape of a V-shaped protrusion formed on an edge of the eyeglass lens, a state processing the edge portion of the eyeglass lens, and a completion of the grinding process of an eyeglass lens.