摘要:
To provide an electrolyte polymer for polymer electrolyte fuel cells, made of a perfluorinated polymer having sulfonic groups, characterized in that in a test of immersing 0.1 g of the polymer in 50 g of a fenton reagent solution containing 3% of an aqueous hydrogen peroxide solution and 200 ppm of bivalent iron ions at 40° C. for 16 hours, the amount of eluted fluorine ions detected in the solution is not more than 0.002% of the total amount of fluorine in the polymer immersed. The electrolyte polymer of the present invention has very few unstable terminal groups and has an excellent durability, and therefore, is suitable as a polymer constituting an electrolyte membrane for polymer electrolyte fuel cells and a polymer contained in a catalyst layer.
摘要:
To provide an electrolyte polymer for polymer electrolyte fuel cells, made of a perfluorinated polymer having sulfonic groups, characterized in that in a test of immersing 0.1 g of the polymer in 50 g of a fenton reagent solution containing 3% of an aqueous hydrogen peroxide solution and 200 ppm of bivalent iron ions at 40° C. for 16 hours, the amount of eluted fluorine ions detected in the solution is not more than 0.002% of the total amount of fluorine in the polymer immersed. The electrolyte polymer of the present invention has very few unstable terminal groups and has an excellent durability, and therefore, is suitable as a polymer constituting an electrolyte membrane for polymer electrolyte fuel cells and a polymer contained in a catalyst layer.
摘要:
To provide an electrolyte polymer for polymer electrolyte fuel cells, made of a perfluorinated polymer having sulfonic groups, characterized in that in a test of immersing 0.1 g of the polymer in 50 g of a fenton reagent solution containing 3% of an aqueous hydrogen peroxide solution and 200 ppm of bivalent iron ions at 40° C. for 16 hours, the amount of eluted fluorine ions detected in the solution is not more than 0.002% of the total amount of fluorine in the polymer immersed. The electrolyte polymer of the present invention has very few unstable terminal groups and has an excellent durability, and therefore, is suitable as a polymer constituting an electrolyte membrane for polymer electrolyte fuel cells and a polymer contained in a catalyst layer.
摘要:
To provide an electrolyte polymer for polymer electrolyte fuel cells, made of a perfluorinated polymer having sulfonic groups, characterized in that in a test of immersing 0.1 g of the polymer in 50 g of a fenton reagent solution containing 3% of an aqueous hydrogen peroxide solution and 200 ppm of bivalent iron ions at 40° C. for 16 hours, the amount of eluted fluorine ions detected in the solution is not more than 0.002% of the total amount of fluorine in the polymer immersed. The electrolyte polymer of the present invention has very few unstable terminal groups and has an excellent durability, and therefore, is suitable as a polymer constituting an electrolyte membrane for polymer electrolyte fuel cells and a polymer contained in a catalyst layer.
摘要:
To provide an electrolyte polymer for polymer electrolyte fuel cells, made of a perfluorinated polymer having sulfonic groups, characterized in that in a test of immersing 0.1 g of the polymer in 50 g of a fenton reagent solution containing 3% of an aqueous hydrogen peroxide solution and 200 ppm of bivalent iron ions at 40° C. for 16 hours, the amount of eluted fluorine ions detected in the solution is not more than 0.002% of the total amount of fluorine in the polymer immersed. The electrolyte polymer of the present invention has very few unstable terminal groups and has an excellent durability, and therefore, is suitable as a polymer constituting an electrolyte membrane for polymer electrolyte fuel cells and a polymer contained in a catalyst layer.
摘要:
To provide an electrolyte polymer for polymer electrolyte fuel cells, made of a perfluorinated polymer having sulfonic groups, characterized in that in a test of immersing 0.1 g of the polymer in 50 g of a fenton reagent solution containing 3% of an aqueous hydrogen peroxide solution and 200 ppm of bivalent iron ions at 40° C. for 16 hours, the amount of eluted fluorine ions detected in the solution is not more than 0.002% of the total amount of fluorine in the polymer immersed. The electrolyte polymer of the present invention has very few unstable terminal groups and has an excellent durability, and therefore, is suitable as a polymer constituting an electrolyte membrane for polymer electrolyte fuel cells and a polymer contained in a catalyst layer.
摘要:
The present invention provides a membrane-electrode assembly for polymer electrolyte fuel cells and a polymer electrolyte fuel cell having excellent dimensional stability and mechanical strength, and having high durability at the time of a power generation. Each of polymer electrolyte membranes (111, 211, 311) have a region 1 having proton conductivity over the entirety in the thickness direction of the membrane and a region 2 located at the outer peripheral portion of the region 1 and having a non-porous sheet disposed so that the region 2 has no proton conductivity over the entirety in the thickness direction of the membrane, and outer edges of the catalyst layers (127, 128) are disposed so as to be located in the area 2.
摘要:
The present invention provides a membrane-electrode assembly for polymer electrolyte fuel cells and a polymer electrolyte fuel cell having excellent dimensional stability and mechanical strength, and having high durability at the time of a power generation. Each of polymer electrolyte membranes (111, 211, 311) have a region 1 having proton conductivity over the entirety in the thickness direction of the membrane and a region 2 located at the outer peripheral portion of the region 1 and having a non-porous sheet disposed so that the region 2 has no proton conductivity over the entirety in the thickness direction of the membrane, and outer edges of the catalyst layers (127, 128) are disposed so as to be located in the area 2.
摘要:
A thickened ion exchange polymer dispersion is obtained by applying ultrasonic vibration or a shearing force to an ion exchange polymer dispersion having a fluorinated polymer having sulfonic acid groups as an ion exchange polymer uniformly dispersed in a dispersion medium so that the viscosity of the dispersion at 25° C. at a shear rate of 10 (1/s) increases 2-2000 times in a thickening step. When formed into a membrane, the dispersion can forms an ion exchange membrane having a uniform and small thickness, high strength, which is free from cracking and shows constant swelling in water and steam. Further, a layer formed by applying a coating solution containing this dispersion and a catalyst powder comprising catalyst metal particles and a carbon support loaded with the catalyst metal particles to a substrate can be used to prepare a membrane-electrode assembly as a catalyst layer for at least one of the cathode and the anode by providing the catalyst layer adjacently to an ion exchange membrane. Because the catalyst layer is highly strong, has few defects and is excellently smooth, a high-performance membrane-electrode assembly for solid polymer electrolyte fuel cells can be obtained.
摘要:
A thickened ion exchange polymer dispersion is obtained by applying ultrasonic vibration or a shearing force to an ion exchange polymer dispersion having a fluorinated polymer having sulfonic acid groups as an ion exchange polymer uniformly dispersed in a dispersion medium so that the viscosity of the dispersion at 25° C. at a shear rate of 10 (1/s) increases 2-2000 times in a thickening step. When formed into a membrane, the dispersion can forms an ion exchange membrane having a uniform and small thickness, high strength, which is free from cracking and shows constant swelling in water and steam. Further, a layer formed by applying a coating solution containing this dispersion and a catalyst powder comprising catalyst metal particles and a carbon support loaded with the catalyst metal particles to a substrate can be used to prepare a membrane-electrode assembly as a catalyst layer for at least one of the cathode and the anode by providing the catalyst layer adjacently to an ion exchange membrane. Because the catalyst layer is highly strong, has few defects and is excellently smooth, a high-performance membrane-electrode assembly for solid polymer electrolyte fuel cells can be obtained.