Abstract:
A spherical annular seal member 40 includes: a spherical annular base member 38 which is defined by a cylindrical inner surface 34 defining a through hole 33 in a central portion, a partially convex spherical surface 35, and annular end faces 36 and 37 on large- and small-diameter sides of the partially convex spherical surface 35; and an outer layer 39 formed integrally on the partially convex spherical surface 35 of the spherical annular base member 38.
Abstract:
A cylindrical gasket includes a reinforcing member 70, a heat-resistant material 71, and pores which are dispersedly distributed in the reinforcing member 70 and the heat-resistant material 71, the reinforcing member 70 and the heat-resistant material 71 are intertwined with each other so as to be provided with structural integrity, and with respect to a total volume of the cylindrical gasket, the reinforcing member 70 occupies a volume of 32 to 60%, the heat-resistant material 71 occupies a volume of 5 to 58%, and the pores occupy a volume of 10 to 35%.
Abstract:
A cylindrical gasket 27 includes a reinforcing member 70 made from a compressed belt-shaped metal wire net 5, a heat-resistant material 71 filled in meshes of the belt-shaped metal wire net 5 of the reinforcing member 70, and pores which are dispersedly distributed in the reinforcing member 70 and the heat-resistant material 71. An inner peripheral surface 23, an outer peripheral surface 24, and annular end faces 25 and 26 of the cylindrical gasket 27 are each formed by a smooth surface in which the heat-resistant material 71 and the reinforcing member 70 are present in mixed form. In the cylindrical gasket 27, the volume contents of the reinforcing member 70, the heat-resistant material 71, and the pores are 32 to 60%, 5 to 58%, and 10 to 35%, respectively.
Abstract:
A spherical annular seal member 40 includes: a spherical annular base member 38 which is defined by a cylindrical inner surface 34 defining a through hole 33 in a central portion, a partially convex spherical surface 35, and annular end faces 36 and 37 on large- and small-diameter sides of the partially convex spherical surface 35; and an outer layer 39 formed integrally on the partially convex spherical surface 35 of the spherical annular base member 38.
Abstract:
A spherical annular seal member 40 includes: a spherical annular base member 38 which is defined by a cylindrical inner surface 34 defining a through hole 33 in a central portion, a partially convex spherical surface 35, and annular end faces 36 and 37 on large- and small-diameter sides of the partially convex spherical surface 35; and an outer layer 39 formed integrally on the partially convex spherical surface 35 of the spherical annular base member 38.
Abstract:
A cylindrical gasket includes a reinforcing member 70, a heat-resistant material 71, and pores which are dispersedly distributed in the reinforcing member 70 and the heat-resistant material 71, the reinforcing member 70 and the heat-resistant material 71 are intertwined with each other so as to be provided with structural integrity, and with respect to a total volume of the cylindrical gasket, the reinforcing member 70 occupies a volume of 32 to 60%, the heat-resistant material 71 occupies a volume of 5 to 58%, and the pores occupy a volume of 10 to 35%.
Abstract:
A cylindrical gasket 27 includes a reinforcing member 70 made from a compressed belt-shaped metal wire net 5, a heat-resistant material 71 filled in meshes of the belt-shaped metal wire net 5 of the reinforcing member 70, and pores which are dispersedly distributed in the reinforcing member 70 and the heat-resistant material 71. An inner peripheral surface 23, an outer peripheral surface 24, and annular end faces 25 and 26 of the cylindrical gasket 27 are each formed by a smooth surface in which the heat-resistant material 71 and the reinforcing member 70 are present in mixed form. In the cylindrical gasket 27, the volume contents of the reinforcing member 70, the heat-resistant material 71, and the pores are 32 to 60%, 5 to 58%, and 10 to 35%, respectively.