Abstract:
An imaging operation terminal may include: a storage section configured to store switching information of an operation mode which operates according to a state of physical contact with an imaging device; a communication section configured to perform wireless communication with the imaging device; a communication detection section configured to detect whether the wireless communication by the communication section with the imaging device is possible; a physical state detection section configured to detect the state of the physical contact with the imaging device; and an operation mode selection section configured to select one operation mode based on the switching information according to the state of the physical contact with the imaging device detected by the physical state detection section after the communication detection section has detected that the wireless communication with the imaging device is possible.
Abstract:
An image capturing device includes: an illuminator configured to generate illumination light composed of components at a plurality of wavelength bands, each of the components having a characteristic in accordance with a corresponding one of settings; an imager configured to generate an image signal by capturing light from a subject; and a processor. The processor is configured to: set an acquisition condition for acquiring spectral information of the subject, the acquisition condition including a condition related to an operation of each of the illuminator and the imager; analyze the image signal generated by the imager based on the acquisition condition in order to acquire the spectral information of the subject; determine whether or not the acquired spectral information satisfies an end condition for ending acquisition of the spectral information; and change the acquisition condition when the processor determines that the end condition is not satisfied.
Abstract:
Eye fatigue in an observer is reduced in the case in which observation is performed by performing visual comparison between an imaging subject and an auxiliary indication superimposed on the imaging subject in a three-dimensional image. Provided is an image-processing device including a display portion that displays a three-dimensional image reproduced from two parallax images of an imaging subject; attention-point detecting portions that detect an attention point of the observer observing the three-dimensional image; a parallax calculating portion that calculates parallax between the two parallax images at the detected attention point; an auxiliary-indication creating portion that creates an auxiliary indication to which the same parallax as the parallax calculated by the parallax calculating portion is assigned, that superimposes the created auxiliary indication on the three-dimensional image, and that displays the superimposed image on the display portion.
Abstract:
An image capturing device includes: an illuminator configured to generate illumination light having wavelength bands and an illumination characteristic; an imager configured to generate an image signal by capturing light from a subject; and a processor configured to: control the illumination characteristic; set a piece of statistical data used for estimating a spectral characteristic of the subject included in the image signal; estimate the spectral characteristic of the subject included in the image signal based on the set piece of statistical data; define an illumination characteristic of illumination light in accordance with the estimated spectral characteristic of the subject; and determine whether or not the set piece of statistical data is an adequate piece of statistical data based on whether or not an image signal generated by the imager under the illumination light having the defined illumination characteristic satisfies a criterion for achromatic color.
Abstract:
An imaging operation terminal includes: a storage section which stores software identification information for identifying imaging and editing software which performs at least one of an operation relating to imaging of an imaging module mounting an optical module and to editing of an image imaged by the imaging module in association with each combination of imaging module identification information for identifying imaging module and optical module identification information for identifying optical module; a communicating section which wirelessly receives the imaging module identification information for identifying the imaging module and the optical module identification information for identifying the optical module mounted to the imaging module from the imaging module when establishing wireless connection with the imaging module; and a software extracting section which extracts the software identification information corresponding to the combination of imaging module identification information and optical module identification information received by the communicating section from the storage section.
Abstract:
An imaging instruction terminal includes: a communication module configured to communicate with an imaging device; a motion detection section configured to detect motion information about motion of the imaging instruction terminal; a command generation section configured to generate an instruction command related to imaging for the imaging device at a timing at which the motion information detected by the motion detection section has exceeded a predetermined threshold value; and a communication control section configured to cause the instruction command related to the imaging to be transmitted from the communication module to the imaging device when the command generation section has generated the instruction command related to the imaging.
Abstract:
A medical image data creation apparatus for training acquires a first medical image, acquires a second medical image that is different from the first medical image and is obtained by photographing a substantially same spot as in the first medical image, creates lesion region information concerning a lesion part in the second medical image, and creates medical image data for training in which the first medical image and the lesion region information are associated with each other.
Abstract:
A subject identification device includes: an illuminator configured to generate illumination light including components at a plurality of wavelength bands, each of the components having a characteristic in accordance with a respective one of settings; an imager configured to generate an image signal by capturing light from a subject under the illumination light having the illumination characteristic; and a processor including hardware. The processor is configured to: define an illumination characteristic of the illumination light; analyze the image signal to acquire spectral information of the subject; and cross check the spectral information of the subject with subject identification information in order to identify the subject. When the subject is not identified, the processor is configured to define another illumination characteristic that causes spectral information of potentials for the subject to be identified, and subsequently each of the imager and the processor performs a process.
Abstract:
A captured image display device includes: a wireless communication unit; an imaging unit; a display unit; an imaging instruction unit which issues an imaging instruction to a remote camera that wirelessly communicates with the wireless communication unit; an image processing unit which performs image processing to convert an image data captured by the imaging unit into an image displayed on the display unit, and when the wireless communication unit wirelessly receives an image data corresponding to an image which is captured by the remote camera based on the imaging instruction, performs image processing to convert the image data into the image displayed on the display unit; and a display control unit which causes an image corresponding to the image data to be displayed on the display unit until the image processing unit ends the image processing for the image data after the imaging instruction is issued.
Abstract:
An imaging operation terminal includes: a storage section which stores software identification information for identifying imaging and editing software which performs at least one of an operation relating to imaging of an imaging module mounting an optical module and to editing of an image imaged by the imaging module in association with each combination of imaging module identification information for identifying imaging module and optical module identification information for identifying optical module; a communicating section which wirelessly receives the imaging module identification information for identifying the imaging module and the optical module identification information for identifying the optical module mounted to the imaging module from the imaging module when establishing wireless connection with the imaging module; and a software extracting section which extracts the software identification information corresponding to the combination of imaging module identification information and optical module identification information received by the communicating section from the storage section.