Abstract:
An image sensor includes: photoelectric conversion elements configured to receive light and accumulate a charge corresponding to an amount of received light; an imaging signal generating unit that converts the charge accumulated in each photoelectric conversion element into a voltage to generate an imaging signal; and a reference signal generating unit that generates a reference signal having a fluctuation component with a same phase as the imaging signal. The imaging signal generating unit includes: a conversion circuit that converts the charge accumulated in each photoelectric conversion element into the imaging signal; a noise eliminating circuit that eliminates a noise component included in the imaging signal; and an output circuit that outputs the imaging signal from the conversion circuit. The reference signal generating unit includes a circuit having a same structure as that of at least one of the conversion circuit, the noise eliminating circuit, and the output circuit.
Abstract:
An imaging device includes a voltage generation circuit and an output circuit. The voltage generation circuit includes a first capacitance element including a fifth terminal. The voltage generation circuit is configured to provide the fifth terminal with a first voltage in accordance with a power source voltage so as to store an electric charge in the first capacitance element. The voltage generation circuit is configured to increase a voltage of the fifth terminal by a second voltage in accordance with the power source voltage so as to generate a control voltage having a greater absolute value than an absolute value of the power source voltage. The output circuit is configured to output the control voltage to at least one of a gate terminal of a reset transistor of a pixel and a gate terminal of a transfer transistor of the pixel.
Abstract:
A booster apparatus includes a voltage conversion control circuit configured to generate second power supply voltage, based on the ground voltage, first power supply voltage, and a driving clock signal. The voltage conversion control circuit includes: a booster circuit configured to generate the second power supply voltage based on an input booster clock signal; a clock buffer configured to generate the booster clock signal and output the generated booster clock signal to the booster circuit; and a voltage comparator that includes: a first voltage generation circuit configured to generate a first signal with a first voltage level; a second voltage generation circuit configured to generate a second signal with a second voltage level; and a comparator configured to compare the first voltage level and the second voltage level and control input of the driving clock signal to be supplied to the clock buffer based on a comparison result.
Abstract:
An imaging element includes: a plurality of pixels configured to receive light from outside and generate and output an imaging signal depending on an amount of the light received; a first transfer line connected to the pixel; a second transfer line; a column selection switch configured to select one pixel column and output the imaging signal to the second transfer line; a column source follower including a gate to which the imaging signal transferred by the first transfer line is input, a drain end being connected to a power supply voltage, and a source end being connected to the column selection switch; a constant current source configured to drive the column source follower and read out the imaging signal to the second transfer line; and a current generating unit configured to flow a predetermined current to the source end side of the column source follower.