Abstract:
A phosphor particle has thereon a moisture resistant treatment of a metallic nitride. By moisture resistant is meant a condition allowing the phosphor particle to fiction in a humid atmosphere for a significantly longer period of time than an untreated particle. The method of making such phosphors comprises the steps of introducing an inert gas into a reaction vessel; charging phosphor particles into the reaction vessel; heating the reaction vessel to a reaction temperature. introducing a first precursor compound such as triiosbutyl aluminum and a second precursor compound such as dimetylamine into a second reaction vessel to form a nitride precursor. The nitride precursor is hexakis(dimethylamido)dialuminum The nitride precursor is introduced into the first reaction vessel in a manner to avoid restrictive reactions. A a co-reactant is introduced into the reaction vessel, the inert gas flow, co-reactant flow and precursor supply are mainitained for a time sufficient to make the phosphor particles moisture resistant. The nitride treated phosphor particles produced by this method, which can include the deposition of a nitride coating on the particles, have excellent efficacy ratings and strong luminance values in lamps after 100 hours use in high humidity (i.e., >95%). By avoiding restrictive reactions and by synthesizing the nitride precursor on stream, the method and apparatus can be used to manufacture commercial quantities of coated phosphors at an economical cost.
Abstract:
A phosphor particle has thereon a moisture resistant treatment of a metallic nitride. By moisture resistant is meant a condition allowing the phosphor particle to function in a humid atmosphere for a significantly longer period of time than an untreated particle. The method of making such phosphors comprises the steps of introducing an inert gas into a reaction vessel; charging phosphor particles into the reaction vessel; heating the reaction vessel to a reaction temperature; introducing a nitride coating precursor into the reaction vessel; introducing a co-reactant into the reaction vessel; and maintaining the inert gas flow, co-reactant flow and precursor supply for a time sufficient to moisture-proof the phosphor particles. The nitride treated phosphor particles produced by this method, which can include the deposition of a nitride coating on the particles, have excellent efficacy ratings and strong luminance values in lamps after 100 hours use in high humidity (i.e., >95%).
Abstract:
A moisture-resistant electroluminescent phosphor is provided wherein the individual phosphor particles have a first coating of an inorganic moisture-resistant coating and a second coating of an organic moisture-resistant coating. The process for making the moisture-resistant phosphor comprises applying a first layer of an inorganic moisture-resistant coating to individual particles of an electroluminescent phosphor to form a first-coated phosphor, substantially isolating said first-coated phosphor from contact with atmospheric oxygen and moisture, and applying a second layer of an organic moisture-resistant coating to the first-coated phosphor to form a second-coated phosphor.