-
公开(公告)号:US09689890B2
公开(公告)日:2017-06-27
申请号:US14590150
申请日:2015-01-06
发明人: Roger Proksch , Jason Cleveland , Dan Bocek , Todd Day , Mario Viani , Clint Callahan
摘要: A controller for cantilever-based instruments, including atomic force microscopes, molecular force probe instruments, high-resolution profilometers and chemical or biological sensing probes. The controller samples the output of the photo-detector commonly used to detect cantilever deflection in these instruments with a very fast analog/digital converter (ADC). The resulting digitized representation of the output signal is then processed with field programmable gate arrays and digital signal processors without making use of analog electronics. Analog signal processing is inherently noisy while digital calculations are inherently “perfect” in that they do not add any random noise to the measured signal. Processing by field programmable gate arrays and digital signal processors maximizes the flexibility of the controller because it can be varied through programming means, without modification of the controller hardware.
-
公开(公告)号:US10107832B2
公开(公告)日:2018-10-23
申请号:US15632664
申请日:2017-06-26
发明人: Roger Proksch , Jason Cleveland , Dan Bocek , Todd Day , Mario Viani , Clint Callahan
摘要: A controller for cantilever-based instruments, including atomic force microscopes, molecular force probe instruments, high-resolution profilometers and chemical or biological sensing probes. The controller samples the output of the photo-detector commonly used to detect cantilever deflection in these instruments with a very fast analog/digital converter (ADC). The resulting digitized representation of the output signal is then processed with field programmable gate arrays and digital signal processors without making use of analog electronics. Analog signal processing is inherently noisy while digital calculations are inherently “perfect” in that they do not add any random noise to the measured signal. Processing by field programmable gate arrays and digital signal processors maximizes the flexibility of the controller because it can be varied through programming means, without modification of the controller hardware.
-
公开(公告)号:US20150113687A1
公开(公告)日:2015-04-23
申请号:US14590150
申请日:2015-01-06
发明人: Roger Proksch , Jason Cleveland , Dan Bocek , Todd Day , Mario Viani , Clint Callahan
摘要: A controller for cantilever-based instruments, including atomic force microscopes, molecular force probe instruments, high-resolution profilometers and chemical or biological sensing probes. The controller samples the output of the photo-detector commonly used to detect cantilever deflection in these instruments with a very fast analog/digital converter (ADC). The resulting digitized representation of the output signal is then processed with field programmable gate arrays and digital signal processors without making use of analog electronics. Analog signal processing is inherently noisy while digital calculations are inherently “perfect” in that they do not add any random noise to the measured signal. Processing by field programmable gate arrays and digital signal processors maximizes the flexibility of the controller because it can be varied through programming means, without modification of the controller hardware.
摘要翻译: 用于基于悬臂的仪器的控制器,包括原子力显微镜,分子力探针仪器,高分辨率轮廓仪和化学或生物传感探针。 控制器采用非常快速的模拟/数字转换器(ADC)对通常用于检测这些仪器中的悬臂偏转的光检测器的输出进行采样。 然后,利用现场可编程门阵列和数字信号处理器对输出信号产生的数字化表示进行处理,而不利用模拟电子装置。 模拟信号处理本质上是嘈杂的,而数字计算本质上是“完美的”,因为它们不会对测量的信号增加任何随机噪声。 通过现场可编程门阵列和数字信号处理器的处理可以最大限度地提高控制器的灵活性,因为它可以通过编程手段进行变化,而无需修改控制器硬件。
-
公开(公告)号:US20170292971A1
公开(公告)日:2017-10-12
申请号:US15632664
申请日:2017-06-26
发明人: Roger Proksch , Jason Cleveland , Dan Bocek , Todd Day , Mario Viani , Clint Callahan
摘要: A controller for cantilever-based instruments, including atomic force microscopes, molecular force probe instruments, high-resolution profilometers and chemical or biological sensing probes. The controller samples the output of the photo-detector commonly used to detect cantilever deflection in these instruments with a very fast analog/digital converter (ADC). The resulting digitized representation of the output signal is then processed with field programmable gate arrays and digital signal processors without making use of analog electronics. Analog signal processing is inherently noisy while digital calculations are inherently “perfect” in that they do not add any random noise to the measured signal. Processing by field programmable gate arrays and digital signal processors maximizes the flexibility of the controller because it can be varied through programming means, without modification of the controller hardware.
-
公开(公告)号:US20170254834A1
公开(公告)日:2017-09-07
申请号:US15465947
申请日:2017-03-22
发明人: Roger Proksch , Mario Viani , Jason Cleveland , Maarten Rutgers , Matthew Klonowski , Deron Walters , James Hodgson , Jonathan Hensel , Paul Costales , Anil Gannepalli
摘要: A modular AFM/SPM which provides faster measurements, in part through the use of smaller probes, of smaller forces and movements, free of noise artifacts, that the old generations of these devices have increasingly been unable to provide. The modular AFM/SPM includes a chassis, the foundation on which the modules of the instrument are supported; a view module providing the optics for viewing the sample and the probe; a head module providing the components for the optical lever arrangement and for steering and focusing those components; a scanner module providing the XYZ translation stage that actuates the sample in those dimensions and the engage mechanism; a isolation module that encloses the chassis and provides acoustic and/or thermal isolation for the instrument and an electronics module which, together with the separate controller, provide the electronics for acquiring and processing images and controlling the other functions of the instrument. All these modules and many of their subassemblies are replaceable and potentially upgradeable. This allows updating to new technology as it becomes available.
-
-
-
-