摘要:
The injection valve has a housing, a nozzle body and a clamping nut connected to the housing that contacts the nozzle body with first contact surface (9) acting on a second contact surface (10), whereby the clamping nut clamps the nozzle body against the housing. The first or second contact surface has a curvature (24) towards the second or first contact surface and the both contact surfaces are in contact in the area of the curvature.
摘要:
The injection valve has a housing, a nozzle body and a clamping nut connected to the housing that contacts the nozzle body with first contact surface (9) acting on a second contact surface (10), whereby the clamping nut clamps the nozzle body against the housing. The first or second contact surface has a curvature (24) towards the second or first contact surface and the both contact surfaces are in contact in the area of the curvature.
摘要:
Located between the frustoconical needle tip and the cylindrical needle shank of a nozzle needle of a fuel injection valve is a frustoconical needle portion, into which is introduced a peripheral groove. Through this kind of arrangement damping is capable of being set, depending on the position of the groove, during the axial movement of the nozzle needle.
摘要:
The nozzle body (5) of a fuel injection valve has a central bore (54) in which a nozzle needle (1) is guided. The tip (52) of the nozzle body (5) has a tapered valve seat (55) which forms together with the sealing edge (27) of the nozzle needle (1) a valve (27, 55) which controls the flow of fuel to the injection holes (9) in the nozzle tip (52). Underneath the sealing edge (27) a circumferential groove (33) is disposed in the truncatoconical needle tip (30, 35, 40, 45) at the level of which the injection holes (9) are disposed, so that when the valve (27, 55) opens the nozzle needle (1) is axially stabilized and the shaping of the injected jet is improved.
摘要:
Fuel injection valve with a nozzle body (300) which has a central guiding bore (312) and, laterally of the guiding bore (312), a fuel inlet passage (338), both leading into a pressure chamber (334), and between them a dividing wall (346) with a very thin wall section. The nozzle body (300) has at its held end a step whereby the fuel inlet passage (338) runs more steeply into the pressure chamber and thus the wall thickness is greater. Thus a greater pressure resistant strength is achieved in the nozzle body.
摘要:
Rapid calibration of a TOF system uses a stationary target object and electrically introduces phase shift into the TOF system to emulate target object relocation. Relatively few parameters suffice to model a parameterized mathematical representation of the transfer function between measured phase and Z distance. The phase-vs-distance model is directly evaluated during actual run-time operation of the TOF system. Preferably modeling includes two components: electrical modeling of phase-vs-distance characteristics that depend upon electrical rather than geometric characteristics of the sensing system, and elliptical modeling that phase-vs-distance characteristics that depending upon geometric rather than electrical characteristics of the sensing system.
摘要:
A high accuracy method for transistor-level static timing analysis is disclosed. Accurate static timing verification requires that individual gate and interconnect delays be accurately calculated. At the sub-micron level, calculating gate and interconnect delays using delay models can result in reduced accuracy. Instead, the proposed method calculates delays through numerical integration using an embedded circuit simulator. It takes into account short circuit current and carefully chooses the set of conditions that results in a tight upper bound of the worst case delay for each gate. Similar repeating transistor configurations of gates in the circuit are automatically identified and a novel interpolation based caching scheme quickly computes gate delays from the delays of similar gates. A tight object code level integration with a commercial high speed transistor-level circuit simulator allows efficient invocation of the simulation.
摘要:
A method and mechanism for performing a timing analysis on virtual component blocks, which is an abstraction of a circuit block is provided. A set of modes for a circuit block are identified, where a mode is a set of meaningful control input values. Each functionally meaningful or useful control input combination is applied to the circuit block. For each control input combination applied, a delay for each data input/output path and each control input/output path not passing through a blocked circuit node for the applied combination of control inputs is calculated. The delay information for the data paths and control paths is stored within a timing model. The delay information may include a maximum or minimum delay for the circuit block. The timing of sequential circuit blocks may also characterized using the methods and mechanisms herein.
摘要:
Disclosed is a fuel injection nozzle comprising a cooling duct (6) that is disposed in the final region of a housing (1), which faces the combustion chamber. In order to cool the zones that are subjected to high thermal stress, the cooling duct (6) is positioned closer to the bore (2) of the valve needle than to the external face of the housing (1) and is provided with a cross-sectional area that has a width corresponding to no more than the height which extends in the axial direction of the nozzle.
摘要:
A system and method for performing a timing analysis on virtual component blocks or other circuit models is provided wherein functional information obtained from the circuit's control inputs and their useful combinations is used to improve accuracy. The control inputs and data inputs for a circuit block are identified. Each functionally meaningful or useful control input combination is applied to the circuit block, and the topological delay for the data inputs are determined only along the paths that are not blocked by the control inputs. The delays along paths that are blocked are ignored. The analysis is further augmented by determining the topological delay for all paths originating at control inputs, without regard to blocking of paths, so as to reduce the chance for possible underestimation of delays from the data inputs. A final timing model may include the combination of maximum delays along data paths for each combination of control inputs, and maximum delays along paths originating from each of the control inputs. The delay analysis may account for different input slews and load capacitances, and the results may be expressed in tabular or matrix form. A useful technique for condensing time delay information (whether scalar or tabular in form) is also provided, to simplify timing characterization of a virtual component block or circuit model. Delay tables or matrixes that are “close” (i.e., within a specified tolerance) may be combined into a single table or matrix.