摘要:
A synchronous optical regenerator applies intensity modulation and phase modulation. The phase modulation is effected after the intensity modulation by the crossed Kerr effect in a Kerr fiber. The clock used for the phase modulation is obtained by injecting a continuous wavelength into the intensity modulator. The regenerator therefore includes a multiplexer coupling continuous light with the signals transmitted, an intensity modulator modulating the signals transmitted and the continuous light, and a Kerr fiber phase modulating the transmitted signals by crossed phase modulation with the intensity-modulated continuous light. Applications include wavelength division multiplex transmission systems.
摘要:
The invention concerns a fiber optic soliton signal transmission system comprising a signal amplifier means and signal regenerator means, in-line first filter means and second filter means associated with the regenerator means, the second filter means being different from the first filter means. Independent optimization of the in-line filter means and the filter means associated with the regenerator improves the performance of the transmission system. In the case of wavelength division multiplexed systems, the invention reduces the effects of jitter induced by collisions between solitons.
摘要:
A method for remodulation of a modulated optical signal is disclosed which uses a disturbed line signal and an optical clock signal derived from the undisturbed original line signal modulated with the bitrate frequency feeding both signals in a Raman amplifying fiber connected to at least one Raman pump running the clock signal as Raman pump wavelength for the line signal.
摘要:
To delay optical signals precisely and continuously in a very small dynamic range, a device for applying a time-delay to optical signals includes a first phase modulator to receive an input optical signal carried by an original center wavelength and to apply a first stage of phase modulation to the carrier wave of the input signal to supply a first intermediate signal carried by a modified center wavelength, a delaying dispersive member having chromatic dispersion to receive the first intermediate signal and to supply a second intermediate signal, and a second phase modulator to receive the second intermediate signal and to apply a second stage of phase modulation to the carrier wave of the second intermediate signal to supply an output signal carried by the original center wavelength. Applications include optical telecommunication systems, in particular converting wavelength division multiplexed signals into time division multiplexed signals and regenerating wavelength division multiplexed signals.
摘要:
The object of the invention enables wavelength division multiplexed solitons conveyed by an optical fiber to be regenerated synchronously. The method uses clock recovery from the WDM signal, and synchronous modulation of the solitons at the clock rate recovered in this way. The locations for the optical modulators are selected to be at a distance between the transmitter and the first modulator or between successive modulators along the optical link such that the signals at different wavelengths are synchronous. The apparatus of the invention regenerates solitons in-line by synchronously modulating said solitons using an optical modulator, clock recovery, and multichannel filtering at the output from the modulator. In a particular embodiment, the telecommunications system of the invention also includes fiber lengths having different dispersion relationships depending on their position within the link, so as to achieve "dispersion management" within the link. The invention is applicable to optical telecommunications over great distances by means of solitons.
摘要:
The invention relates to an optical fiber transmission system using soliton signals with wavelength division multiplexing in which the wavelengths, &lgr;1 to &lgr;n, of the various channels of the multiplex are selected in such a manner that at least one point of the transmission system, the difference between the bit times of any two channels of the multiplex is substantially a submultiple T/N of the clock period. The invention proposes placing a synchronous modulator at said point to modulate the soliton signals at a frequency N/T which is a multiple of the soliton clock frequency 1/T. In a frequency allocation scheme that ensures that the bit times of the channels are synchronous at an interval ZR, this makes it possible to modulate all of the channels at intervals that are submultiples of ZR by using modulation frequencies that are multiples of the clock frequency.
摘要:
The invention provides a method of repairing an optical fiber transmission system using soliton signals and wavelength division multiplexing, in which the various wavelengths, &lgr;1 to &lgr;n, of the multiplex are selected to ensure that over a given interval ZR, the relative slip between the various channels is substantially equal to a multiple of the bit time, the method comprising the following steps: inserting an additional length of optical fiber in the transmission system; and compensating for the effects of said additional length on the relative slip between the various channels of the multiplex. The invention also provides apparatus for repairing such an optical fiber transmission system using solution signals with wavelength division multiplexing. The invention prevents relative slip between the channels due to inserting an additional length of fiber into the transmission system.
摘要:
The disclosure relates to an end fitting (40) for connecting a flexible pipe for transporting a cryogenic fluid, comprising thermal insulation means (65) interposed between the cold part (41) of the connecting end fitting and the rear part (51) for crimping the end of a leak proof sealed external sheath (9) of said flexible pipe.
摘要:
A wavelength converter for binary optical signals includes an interferometer structure (110) for generating an output signal by modulating a received local signal (LS) according to the modulation of a fUrther received first input signal (IS 1). When such interferometer structures (110) are operated in a standard mode it is known in the art to control the power of the input signal such that the extinction ratio of the output signal is kept minimal. The invention also controls the power of the input signals to achieve the minimal extinction ratio when the wavelength converter and in particular the interferometer structure (110) is operated in a differential mode receiving two input signals.
摘要:
An optical receiver (5) for an optical network (2) comprises a dispersion compensation module (7) for adjusting an amount of chromatic dispersion of optical signals transmitted through the optical network (2) and is characterized in that a nonlinear optical element (13) for spectral broadening of a dispersion probe signal transmitted through the optical network (2) is arranged in a measuring path (11) downstream of the dispersion compensation module (7), and a power measuring means (15) for measuring an average power of the optical dispersion probe signal over a predetermined frequency range is arranged downstream of the nonlinear optical element (13) in the measuring path (11).